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ABSTRACT 

Engineers are challenged to produce better designs in less time and for less cost. 

Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity 

data must be assimilated rapidly into the design, analysis and simulation process. This 

data assimilation should consider diverse mathematical modeling and multi-discipline 

interactions necessitated by concepts exploiting advanced materials and structures. 

Integrated high-fidelity methods with diverse engineering applications provide the 

enabling technologies to assimilate these high-fidelity, multi-disciplinary data rapidly at 

an early stage in the design. These integrated methods must be multifunctional, 

collaborative and applicable to the general field of engineering science and mechanics. 

Multifunctional methodologies and analysis procedures are formulated for 

interfacing diverse domain idealizations including multi-fidelity modeling methods and 

multi-discipline analysis methods. These methods, based on the method of weighted 

residuals, ensure accurate compatibility of primary and secondary variables across the 

domain interfaces. Methods are developed for scalar-field and vector-field problems in 

engineering science with extensions to multidisciplinary problems. Results are presented 

for the scalar- and vector-field developments using example patch test problems. In 

addition, results for torsion, thermal, and potential flow problems are presented to 

demonstrate further the effectiveness of the scalar-field development. Results for plane 

stress and plane flow problems are presented for the vector-field development. Results 

for all problems presented are in overall good agreement with the exact analytical 

solution or the reference numerical solution. 
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The multifunctional methodology presented provides an effective mechanism by 

which domains with diverse idealizations are interfaced. This capability rapidly provides 

the high-fidelity data needed in the early design phase. Moreover, the capability is 

applicable to the general field of engineering science and mechanics. Hence, it provides 

a collaborative capability that accounts for interactions among engineering analysis 

methods. 



V 

TABLE OF CONTENTS 

Page 

.. LIST OF TABLES ............................................................................................................ mi 

... LIST OF FIGURES ......................................................................................................... viii 

Chapter 

I . INTRODUCTION ............................................................................................... 1 
1.1. MOTIVATION .................................................................................... 1 
1.2. CONTINUUM MECHANICS FOUNDATIONS ............................... 7 
1.3. LITERATURE REVIEW FOR COLLABORATIVE METHODS ... 15 
1.4. OBJECTIVES AND SCOPE ............................................................. 18 

I1 . MULTIFUNCTIONAL APPROACH FOR SCALAR-FIELD PROBLEMS . 21 
2.1. GENERAL ......................................................................................... 21 
1.2. DISCIPLINE SPECIFICS .................................................................. 22 
1.3. SINGLE-DOMAIN FORMULATION .............................................. 27 
1.4. MULTIPLE-DOMAIN FORMULATION ........................................ 32 
1.5. SPATIAL MODELING FOR MULTIPLE DOMAINS .................... 43 
1.6. COMPUTATIONAL IMPLICATIONS ............................................ 67 
1.7. VERIFICATION TEST CASE .......................................................... 71 

I11 . MULTIFUNCTIONAL APPROACH FOR VECTOR-FIELD PROBLEMS 76 
3.1. GENERAL ......................................................................................... 76 
1.2. CONTINUUM MECHANICS FOUNDATIONS ............................. 77 
1.3. DISCIPLINE SPECIFICS .................................................................. 84 
1.4. SINGLE-DOMAIN FORMULATION .............................................. 93 
1.5. MULTIPLE-DOMAIN FORMULATION ........................................ 99 
1.6. SPATIAL MODELING FOR MULTIPLE DOMAINS .................. 106 
1.7. COMPUTATIONAL IMPLICATIONS .......................................... 138 
1.8. VERIFICATION TEST CASE ........................................................ 142 

IV . REPRESENTATIVE SCALAR-FIELD APPLICATIONS ......................... 148 
4.1. GENERAL ....................................................................................... 148 
4.2. TORSION OF PRISMATIC BAR ................................................... 148 
1.3. HEAT CONDUCTION PROBLEM ................................................ 158 
1.4. POTENTIAL FLOW PROBLEM ................................................... 165 
1.5. SUMMARY ..................................................................................... 172 



v1 

Page 
Chapter 

V . REPRESENTATIVE VECTOR-FIELD APPLICATIONS AND 
EXTENSIONS .............................................................................................. 174 

5.1. GENERAL ....................................................................................... 174 
5.2. PLANE STRESS PROBLEM .......................................................... 174 
1.3. PLANE FLOW PROBLEM ............................................................. 186 
1.4. EXTENSIONS TO MULTIPLE DISCIPLINES ............................. 195 
1.5. SUMMARY ..................................................................................... 201 

VI . CONCLUSIONS AND RECOMMENDATIONS ....................................... 202 
6.1. GENERAL ....................................................................................... 202 
6.2. CONCLUSIONS .............................................................................. 202 
6.3. RECOMMENDATIONS FOR FUTURE WORK .......................... 207 

A . OVERVIEW OF STEPS IN ANALYSIS AND SIMULATION ................. 209 
B . CUBIC SPLINE INTERPOLATION MATRICES ...................................... 216 
C . DERIVATION OF INTERFACE GEOMETRY .......................................... 222 

C . 1 . GENERAL ..................................................................................... 222 
C.2. GEOMETRY REPRESENTATION .............................................. 223 

APPENDICES 

REFERENCES ................................................................................................................ 227 



vii 

LIST OF TABLES 

Table Page 

Table 2.1. Shape Functions for a Nine-Node Quadrilateral Finite Element ................... 55 

Table 2.2. Results of the Multifunctional Approach for the Patch Test Problems ......... 75 

Table 3.1. Results of the Multifunctional Approach for the Cantilevered Plate ........... 147 

Table 4.1. Normalized Twisting Moment for the Prismatic Bar ................................... 155 

Table 4.2. Normalized Maximum Shear for the Prismatic Bar ..................................... 158 



... 
Vll l  

LIST OF FIGURES 

Figure Page 

Figure 2.1. Geometric Representation of Two-Dimensional Domain ............................. 22 

Figure 2.2. Geometric Configuration of Prismatic Bar .................................................... 23 

Figure 2.3. Boundary Definitions for Two-Dimensional Subdomains ............................ 34 

Figure 2.4. One-Dimensional Finite Difference Element Configuration ......................... 50 

Figure 2.5. Two-Dimensional Finite Difference Element Configuration ........................ 52 

Figure 2.6. Interface Definition ........................................................................................ 60 

Figure 2.7. Two-Dimensional Rectangular Domain ........................................................ 72 

Figure 2.8. Spatial Discretization for Two-Dimensional Rectangular Domain ............... 74 

Figure 3.1. Analysis Domain and Boundary Conditions of Cantilevered Plate ............. 144 

Figure 3.2. Multiple-Domain Discretization of Cantilevered Plate ................................ 144 

Figure 3.3. Central Difference Template Applied at a Corner ........................................ 145 

Figure 4.1. Prismatic Bar with Rectangular Cross.Section ........................................... 149 

Figure 4.2. Analysis Domain and Boundary Conditions for Prismatic Bar with 
Rectangular Cross.Section ........................................................................... 150 

Figure 4.3. Analysis Domain. Boundary Conditions and Typical Mesh for One Quadrant 
of Prismatic Bar with Rectangular Cross.Section ....................................... 152 

Figure 4.4. Multiple-Domain (1 1 x 11)/(21 x 21) Idealization ...................................... 153 

Figure 4.5. Analysis Domain and Boundary Conditions for the Steady-State Heat . .  Conduction in a Square Plate ....................................................................... 160 

Figure 4.6. Homogeneous (3 x 5)/(2 x 3) Idealization .................................................. 161 

Figure 4.7. Temperature Distribution Along Insulated Edge of Square Plate ............... 164 

Figure 4.8. Spatial Discretization for Inclined Interface for Square Plate ..................... 165 



1x 

Figure Page 

Figure 4.9. Temperature Distribution Along Insulated Edge of Square Plate with Inclined 
Interface ....................................................................................................... 165 

Figure 4.10. Domain of Flow Around Cylinder .............................................................. 166 

Figure 4.11. Analysis Domain of Flow Around Cylinder ............................................... 167 

Figure 4.12. Spatial Discretization for One Quadrant of Domain of Flow Around 
Cylinder ....................................................................................................... 168 

Figure 4.13. Contour Plot of Velocity Potential for Flow Around Cylinder .................. 169 

Figure 4.14. Contour Plot of Horizontal Velocity Component for Flow Around 
Cylinder ....................................................................................................... 169 

Figure 4.15. Contour Plot of Transverse Velocity Component for Flow Around 
Cylinder ....................................................................................................... 170 

Figure 4.16. Tangential Velocity for Flow Around Cylinder ......................................... 172 

Figure 5.1. Domain of Plate with Central Circular Cutout ............................................. 176 

Figure 5.2. Geometric Configuration for One Quadrant of Plate with Central Circular 
Cutout ........................................................................................................... 177 

Figure 5.3. Finite Element Models for One Quadrant of Infinite Plate with Central 
Circular Cutout ............................................................................................. 177 

Figure 5.4. Longitudinal Stress Distribution along Midwidth and Midlength for Infinite 
Plate with Central Circular Cutout ............................................................... 179 

Figure 5.5. Displacement Magnitude Distribution for Infinite Plate with Central 
Cutout ........................................................................................................... 180 

Figure 5.6. Longitudinal Stress Resultant Distribution for Infinite Plate with Central 
Cutout ........................................................................................................... 180 

Figure 5.7. Finite Element Models for One Quadrant of Finite-Width Plate with Central 
Cutout ........................................................................................................... 182 

Figure 5.8. Convergence of Longitudinal Stress Distribution along Midlength for Finite- 
Width Plate with Central Circular Cutout .................................................... 185 



A 

Figure Page 

Figure 5.9. Longitudinal Stress Distribution along Midwidth and Midlength for Finite- 
Width Plate with Central Circular Cutout. .................................................. 185 

Figure 5.10. Displacement Magnitude Distribution for Finite-Width Plate with Central 
Circular Cutout. ........................................................................................... 186 

Figure 5.1 1. Longitudinal Stress Resultant Distribution for Finite-Width Plate with 
Central Circular Cutout. .............................................................................. 186 

Figure 5.12. Geometric Configuration for Fluid Squeezed Between Parallel Plates.. . . . . 188 

Figure 5.13. Finite Element Models for Fluid Squeezed Between Two Parallel Plates. 188 

Figure 5.14. Horizontal Velocity for the Flow Between Two Parallel Plates ................. 192 

Figure 5.15. Pressure Distribution Near Centerline for the Flow Between Two Parallel 
Plates. .... . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . 193 

Figure 5.16. Shear Stress Distribution Near Plate Boundary for the Flow Between Two 
Parallel Plates. ... . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 

Figure 5.17. Longitudinal Stress Distribution Near Plate Boundary for the Flow Between 
Two Parallel Plates. ... . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

Figure 5.18. Transverse Stress Distribution Near Centerline for the Flow Between Two 
Parallel Plates. ... . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 

Figure 5.19. Beam and Wing-box Structural Models. .................................................... 198 



1 

CHAPTER I 

INTRODUCTION 

1.1. MOTIVATION 

The analysis of revolutionary aerospace and ground vehicles relies heavily on 

accurate, efficient and robust computational methodologies such as the finite element and 

finite difference methods. To investigate novel and revolutionary design concepts, 

accurate, high-fidelity data must be assimilated rapidly into the design, analysis and 

simulation process. This data assimilation should consider mathematical modeling 

approximations ranging from simple handbook equations, empirically derived relations, 

spreadsheets, and design charts to complex continuous and discrete simulation models. 

In addition, the data assimilation needs to consider associated multi-discipline 

interactions necessitated by advanced design concepts exploiting multifunctional 

materials and leading to multifunctional structures. Rapid discipline-centric modeling 

techniques allow high-fidelity design trades between cost and performance, and based on 

the insight provided by these simulations, design uncertainties and risk assessment may 

be evaluated. Integrated multi-discipline analyses allow the assessment of the effects of 

multidisciplinary coupling on the system response. New computing systems and 

alternative computing strategies have presented new opportunities for optimal design, 

analysis, and simulation of aerospace systems. However, integrated high-fidelity 

methods with diverse engineering applications provide the enabling technologies to 

assimilate high-fidelity, multi-disciplinary data rapidly at an early stage in the design. 

The journal model for this dissertation is the AIAA Journal. 
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These integrated methods must be multifunctional, collaborative and applicable to the 

general field of engineering science and mechanics. 

To understand the impact of these integrated methods, the three concomitant 

attributes, namely, multifunctional, collaborative, and engineering science and 

mechanics, must be described. In the context of this work, multifunctional 

characterization has been adopted from the description of new and innovative materials 

and structures with multiple capabilities. These systems, referred to as multifunctional 

materials and structures, respectively, have several desirable simultaneous properties and 

many diverse disciplinary applications. The systems will adapt, react and evolve in 

changing environments, and their use will result in a combined system with enhanced 

capabilities at less cost and weight. Likewise, multifunctional methods refer to 

computational methodologies that have multiple capabilities such as multiple fidelity 

modeling, multiple approximation analysis and multidisciplinary analysis. The methods 

are computationally efficient while preserving solution accuracy and are applicable to a 

wide range of applications in engineering science. Their use in the combined analysis of 

complex configurations promises to provide enhanced computational and engineering 

capability at less cost and in less time. With these attributes, a multifunctional method 

may address the diverse modeling and analysis needs of evolving systems perhaps using 

a hierarchical approach including error analysis and risk assessment. 

The collaborative aspect of the computational methods provides a mechanism by 

which two or more physical domains are integrated or interfaced and by which two or 

more methods or algorithms are shared or interfaced. It is through this interfacing that 

the diverse attributes create a unified framework that far exceeds the capability of an 
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individual method. Collaborative methods may integrate domains of different 

discretization fidelity, analysis approximations, or disciplines. An example of a 

collaborative method is adaptive dynamic relaxation. Explicit direct time integration 

algorithms are well-known for their computational efficient, low-memory requirements, 

low computational cost per solution step and direct mapping to massively parallel 

processing (MPP) systems. Adaptive dynamic relaxation techniques exploit these 

features to determine the quasi-static or steady-state response of a structure without 

relying on traditional methods requiring the solution of the large sparse matrices. 

Collaborative methods provide a mechanism by which the aggregate cost savings related 

to computational and modeling requirements are reduced, and analyses, previously 

intractable, may be performed. As in the case of the multifunctional materials or 

structures, these methods adapt, react and evolve in the changing environments of 

engineering science. Engineering science covers the broad perspective of engineering 

and includes the integrated application of engineering principles, science, mathematics, 

numerical analysis and non-deterministic methods. Problems in fluid flow, solid 

mechanics, thermal analysis, and constitutive modeling are representative of those in 

engineering science. Engineering science has a multidisciplinary emphasis, and future 

methods applicable to the field should possess multifunctional characteristics and a 

collaborative nature to further enhance their analysis capabilities and to advance the state- 

of-the-art in engineering design. 

Multifunctional collaborative methods should address four typical steps of 

analysis and design, namely, (1) representation or modeling of the geometry, (2) 

knowledge-based selection and development of appropriate mathematical models (i.e., 
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idealizatioddiscretization), (3) solution of the mathematical model (continuous and/or 

discrete), and (4) interrogatiodassessment of the results. These steps are briefly outlined 

in Appendix A. Methodology and analysis procedures that address these basic steps 

provide the foundation for enhanced integrated design and analysis tools within the realm 

of engineering science. Such multifunctional methodology should allow interaction 

between and collaboration with the analyst and designer, among different mathematical 

modeling approximations of the physical phenomena, and among multiple engineering 

disciplines. A major feature of the methodology is the transfer of data across the 

respective interface, whether the interface is one among diverse mathematical 

approximations or among diverse disciplines. Computational issues associated with 

individual modeling approaches and disciplines are magnified in number and significance 

due to the intricate couplings manifesting themselves as a by-product of their interfacing. 

Multi-fidelity modeling approaches provide benefits in all of the major steps of 

analysis and simulation. These approaches are often characterized by the use of different 

approximations among multiple domains of the same continua and multiple domains 

involving different continua (e.g., fluid-structure interaction). Analytical and closed- 

form solutions for specific geometries and configurations are often used to eliminate 

constraints placed on the analysis due to geometry considerations. Rapid modeling 

approaches facilitate the discretization of geometry by providing a capability to model 

regions of interest, independently, increasing the discretization fidelity or enhancing the 

mathematical approximation only in the desired domains. Thus, for multi-fidelity finite 

element modeling approaches, complex and often unsuitable mesh transitioning, 

generated manually or using automatic mesh generators, is limited. In addition, multi- 
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fidelity approaches have been developed that allow for the discretization of parts or 

components across geographically dispersed locations with minimal concern for the 

discretization of the parts along common boundaries or interfaces. Additional research 

has provided for accommodation of slight anomalies in the geometric representation 

provided by the independently discretized parts as well as parametric definition of the 

interface geometry between parts. Multi-fidelity modeling approaches benefit the 

solution of the discretized system in that the system size using a multi-domain approach 

for global/local modeling may be smaller for a given level of solution accuracy than the 

system obtained by standard practices. In addition, in component modeling, the 

associated matrices may be reduced by static condensation, which reduces the size and 

subsequent solution time of the overall system of equations. Multi-fidelity modeling 

approaches allow for the visualization and interrogation of the results only in regions of 

interest. Post-processing of secondary results such as stresses and failure parameters may 

be isolated to these regions and dynamically computed as the need arises. By reducing 

the modeling, computational and visualization time of simulations of aerospace 

structures, multi-fidelity modeling approaches promise to enhance the viability of high- 

fidelity analyses early in the design process. 

Multidisciplinary coupling approaches involve the interfacing of different 

disciplines to account for their interactions and impact on the overall system response. 

There are myriad approaches, for example, any combination of approaches that couple 

the fluids, thermal, structures, and acoustic disciplines. The traditional independent 

approach for multidisciplinary analysis involves loosely coupling the disciplines through 

sequential execution of single discipline analyses. Typically this approach requires 
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several iterations among the different analysis methods and analysts and is relatively 

inefficient because the discipline specific models are generally incompatible and require 

extensive post-processing after each single discipline analysis to transfer (or interface) 

data to the next analysis model. Aeroelastic analysis as an interdisciplinary problem, 

requires the coupling of the aerodynamic and structural responses. The use of different 

spatial discretization procedures and potentially different mathematical modeling 

approximations for the aerodynamic model and the structures model gives rise to the 

interfacing problem of transferring computed data between the two grid systems. 

Moreover, the same issues are prevalent in fluid-thermal-structural analyses and 

structural-acoustic analyses. Suitable methodology for addressing these types of 

interfacing problems has been developed by many researchers. 

The overarching purpose of this research is to investigate multifunctional 

collaborative methods, as described herein, that address the engineering design and 

analysis needs of multidisciplinary problems in engineering science. This research 

focuses on the fundamental relationships among underlying engineering science and 

mechanics principles, computational methods and multi-fidelity models, and methods 

using basic problems from continuum mechanics. Given its broad applicability with 

respect to the field of engineering science, continuum mechanics forms the foundation for 

the multifunctional collaborative methods developed in this work. Hence, for 

completeness and to establish notation, basic concepts of continuum mechanics are 

presented briefly in the next section. 
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1.2. CONTINUUM MECHANICS FOUNDATIONS 

Continuum mechanics is the branch of physical sciences concerned with the 

deformations and motions of continuous material media under the influence of external 

effects1. The effects that influence the bodies appear in the form of forces, 

displacements, and velocities which arise from contact with other bodies, gravitational 

forces, thermal changes, chemical interactions, electromagnetic effects, and other 

environmental changes. In this work, bodies subject to forces of mechanical origin 

and/or thermal changes are of primary concern. General principles in the form of integral 

or differential equations govern the deformation and motion of the continuum. Hence, 

approximation methods and associated concepts are introduced in addition to the basic 

concepts of continuum mechanics. 

1.2.1. General Principles of Continuous Media 

A medium can be generally categorized as a fluid or a solid. A fluid can be 

loosely defined as a continuum that does not require external forces to maintain its 

deformed shape. When highly compressible it is called a gas and when essentially 

incompressible, it is called a liquid. A solid can be loosely defined as a continuum that 

requires external forces to maintain its deformed shape. According to its behavior, a 

solid may be called elastic, plastic, viscoelastic, thermoelastic, etc. Usually it is assumed 

to have a uniform density2. When a medium deforms, the small volumetric elements 

change position by moving along space curves. Their positions as functions of time can 

be specified either by the Lagrangian (Xi = Xi (xi, t )  for i=l , 2 ,  3) or Eulerian 

description (xi = xi (Xi ,t) ). In the Lagrangian description, each particle is tracked in 

terms of its initial position with respect to a fixed reference system, Xi, and time. In the 
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Eulerian description, the motion is expressed in terms of the instantaneous position vector 

with respect to a moving reference system, xi, and time. 

Classical continuum mechanics rests upon equations expressing the balances of 

mass, linear momentum, angular momentum, energy, and entropy in a moving body3. 

These balance laws apply to all material bodies, whether fluid or solid in composition, 

and each gives rise to a field equation. These balance laws are as follows: 

i. Principle of conservation of mass 

ii. Principle of conservation of linear momentum 

iii. Principle of conservation of angular momentum 

iv. Principle of conservation of energy 

v. Principle of entropy 

The principle of conservation of mass states that when the total mass of the body is 

unchanged for an arbitrarily small neighborhood of each material point, the mass is 

considered to be conserved locally. The conservation of linear momentum represents 

Newton’s second law and governs the motion of the continuum under the influence of the 

external effects. The principle of conservation of angular momentum is used to show 

symmetry of the stress tensor for many engineering materials, and the stress tensor 

describes the state of stress of the continuum. The principle of conservation of energy, 

also called the first law of thermodynamics, states that energy is conserved if the time 

rate of change of the kinetic and internal energy is equal to the sum of the rate of work of 

the external forces and all the other energies entering or leaving the body. The second 

law of thermodynamics is automatically satisfied and includes the change in entropy of 
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the continuum. More detailed descriptions of these balance laws are presented in Chapter 

111. 

In deriving the governing equations, the starting point is a statement of the 

conservation principle applied to a “control volume” to develop the integral form of the 

equation and extract the differential form by using the divergence theorem. A control 

volume has a fixed volume in space; its boundary does not deform but allows mass 

transfer through it. In contrast, a material volume contains the same quantity of material 

at all times; its boundary can deform, and it does not allow mass transfer. 

As the continuum moves, in general, properties change with time and space. The 

material derivative (substantial or total) must account for these changes depending on the 

method of description used. Consider the scalar property as 4, for the Lagrangian 

description, the material derivative is: 

For the Eulerian description, the material derivative is: 

= - + v . V $  34) 
at 

The general conservation equation may be written in integral form or differential 

form in conservative or divergence form. However, when considering the differential 

form, an equivalent representation is often obtained by working out the divergence 

operator and introducing the material derivative. This leads to a non-conservative form 
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of the differential equation. Although the conservative and non-conservative forms of the 

differential equations of the conservation principles are equivalent from a mathematical 

point of view, they will not necessarily remain so when a numerical discretization is 

performed. The general form of the conservation law is said to be written in conservative 

or divergence form. The importance of the conservative form in a numerical scheme lies 

in the fact that, if not properly taken into account, a discretization of the differential 

equations will lead to a numerical scheme in which all the mass fluxes through the mesh - 

cell boundaries will not cancel; hence, the numerical scheme will not keep the total mass 

constant4. 

1.2.2. Mathematical Approximations 

Mathematical problems frequently encountered in engineering science may be 

classified as boundary-value and initial-value problems based upon the existence of one 

or more supplementary conditions. The differential equation describes a boundary-value 

problem if the dependent variable and possibly its derivative are required to have 

specified values on the domain boundary. The differential equation describes an initial- 

value problem if the dependent variable and possibly its derivative are specified initially 

( 2 .  e., t=O). Initial-value problems are generally time dependent. 

Partial differential equations governing the motion of general continua are often 

of the canonical form Au, + Bu, + Cu, = 0 where the coefficients A, B, and C are 

real constants, u represents a field variable, and the subscripts, x andy, denote partial 

differentiation with respect to the independent variables, x andy. The character of this 

quasi-linear, second-order, partial differential equation is determined by the sign of the 

discriminant, B 2  - 4AC . The partial differential equation is 
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elliptic for B 2 - 4 A C < 0  

hyperbolic for B 2  -4AC>O 

parabolic for B 2 - 4 A C = O  

The full significance of the classification of quasi-linear, second-order partial differential 

equations as elliptic, hyperbolic, or parabolic is beyond the scope of this work. However, 

this classification has proved important for an understanding of the kinds of initial and 

boundary conditions one must furnish along with the partial differential equation in order 

to determine a unique solution. Moreover, solution methods differ markedly from one 

classification to another, which is of particular importance in the field of fluid 

mechanics6. For example, boundary conditions are generally imposed all the way around 

a rectangular domain (the x-y region) of a two-dimensional flow when the equation is 

elliptic, and the solution must have no discontinuities in the second derivatives, except 

possibly at singular points where the differential equation is not applicable. Hyperbolic 

and parabolic equations, by contrast, have at least one open boundary; thus, boundary 

conditions are not usually imposed all around the domain under consideration. The 

boundary conditions for at least one variable, usually time, are specified at one end, and 

the system is integrated indefinitely. Certain kinds of discontinuities in the second 

derivatives are admissible across certain curves in such a way that the differential 

equation continues to be applicable in those regions. 

Approximate solutions of differential equations (e.g., Ritz, Galerkin, least- 

squares, collocation or in general weighted-residual methods) satisfy only part of the 

conditions of the problem. For example, either the governing equation or the boundary 

conditions may be satisfied only at a few positions rather than at each point. The 
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approximate solution is expanded in a set of known functions with arbitrary parameters. 

Two ways to determine the parameters are the method of weighted residuals (MWR) and 

the variational method. While the MWR and variational methods are only briefly 

discussed here, a more complete discussion of the approaches is given in the literature by 

Finlayson7. In MWR, one works directly with the differential equation and boundary 

conditions, whereas in the variational method one tries to satisfy the governing 

differential equation in an average sense using a functional related to the differential 

equations and/or the boundary conditions. MWR encompasses several methods 

(collocation, Galerkin, integral, etc.) and provides a framework to compare and contrast 

methods. Variational methods are not applicable to all problems, and thus suffer a lack 

of generality. MWR is easy to apply whereas variational methods require manipulation 

that can be more complex. 

Variational methods provide a means for the determination of the governing 

equations. In solid mechanics, the principles of virtual work and stationary potential 

energy can be used to derive the governing equations and boundary conditions. The 

principle of virtual work demands that for the state of equilibrium, the work of the 

impressed forces is zero for any infinitesimal variation of the configuration of the system 

that is in harmony with the kinematic constraints. Hence, the variational statement 

implicitly imposes the natural boundary conditions. All work statements are derived 

from classical laws pertaining to the equilibrium of the particle. Moreover, the virtual 

work statement is simply the weak form of the equilibrium equations. For monogenic 

forces, this statement leads to the condition that for equilibrium, the potential energy shall 

be stationary with respect to all kinematically permissible variations. 
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The original differential equation is said to be the strong form of the problem 

while the integral form is typically referred to as the weak form. However, in the strict 

sense, particularly for approximation methods such as the Galerkin method, the weak 

form is obtained by transferring the differentiation from the dependent variable to the test 

functions, which includes the identification of the type of boundary conditions that the 

weak form can admit. The purpose of the transfer of differentiation is to equalize the 

continuity requirements on the dependent variable and the test function. This results in a 

weaker continuity requirement on the solution in the weak form than in the original 

equation. In the process of transferring the differentiation, boundary terms that determine 

the nature of the natural or essential boundary conditions in the solution are obtained. 

The classification of boundary conditions as natural and essential boundary 

conditions plays a crucial role in the derivation of the approximate functions. From 

variational calculus, consider a partial differential equation in the form, 

where F = F(x,y,u,ux,uy) , u, = au /ax and u y  = au / ay  . Transferring the 

differentiation from the dependent variable, u, to the test function, v, yields the weak 

form of the differential equations in the form 

aF a v  aF av  aF aF v-+--+-- 
au axau, ayauy  

It is at this point that the natural and essential boundary conditions are readily identified. 

Generally, specifying coefficients of v and its derivative in the boundary integral 

constitute the natural boundary condition. That is, 
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aF -n, +-n, = i  on r aF 

3% 3% 

is the natural boundary condition. Specification of the dependent variable in the same 

form as the arbitrary test function constitutes the essential boundary condition. In the 

case presented above, only v appears in the boundary integral. Hence, specifying u on r 

is the essential boundary condition. The variables involved in the essential boundary 

conditions of the problem are identified as primary variables and those in the natural 

boundary conditions as the secondary variables in the formulation. The primary variables 

are required to be continuous, whereas the secondary variables may be discontinuous in a 

problem. 

The differential equation is said to describe a scalar-field problem if the 

dependent variable is a scalar and requires only the specification of magnitude for a 

complete description. A vector-field problem is one that requires the specification of 

magnitude and direction. The Poisson equation is an example of a differential equation 

describing a scalar-field problem that arises in many fields of engineering science such as 

elasticity, heat transfer, fluid mechanics, and electrostatics. The equation of motion is an 

example of a differential equation describing the vector-field problem that governs the 

motion of general continua. Each of these categories of differential equations will be 

discussed in more detail and the concomitant formulations presented in Chapters I1 and 

111. 

The basic concepts of continuum mechanics and the ancillary fundamental 

concepts of mathematical approximation methods outlined in this section form the basis 

for the methodologies developed in this work. In subsequent chapters, the concepts are 
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described further as they relate to the development of multifunctional approaches for 

scalar-field and vector-field problems in engineering science. 

1.3. LITERATURE REVIEW FOR COLLABORATIVE METHODS 

This section includes a literature review of topics related to collaborative methods 

for multi-fidelity modeling and analysis. Review of approaches for collaborative 

modeling of multiple domains is presented. This review is not intended to be an 

exhaustive review of the subject matter but rather to provide sufficient background of the 

fundamental concepts applicable to collaborative methods for engineering science. For 

more detailed discussions on any of the topics reviewed, the reader is directed to the 

referenced reports. 

Multi-fidelity modeling, as referred to herein, entails the use of diverse 

approximations among multiple domains. Numerous approaches for multi-fidelity 

modeling have been developed over the last several decades. Many of these approaches 

are commonplace in the analysis and design of aerospace structures. Generally, these 

methods focus on modeling to obtain accurate stress data, and they have been used 

primarily in an analysis framework rather than as an integral part of the design process. 

With the development of rapid equation solvers and fast computer systems with 

enormous storage capacities, these methods have the potential for impacting the 

preliminary design stage. Research directly applicable to multi-fidelity modeling based 

upon the finite element method continues to flourish. Developments pertinent to this 

research include substructuring, global/local methods, model synthesis methods (Le., 

multiple method approaches), submodeling, and finite element interface methods. While 
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all of these methods can be used in a global/local analysis, in general, they provide a 

diverse capability for modeling multiple subdomains. 

Substructuring, submodeling, and general global/local methods have been 

highlighted, for example, by Ransom' and Ransom and Knight' and have been further 

elaborated on by Rose". One notable application of substructuring related to recent 

advances in computational strategies is the use of neural networks to synthesize or 

combine substructures". In reference 11, substructures are modeled individually with 

computational neural networks, and the response of the assembled substructure is 

predicted by synthesizing the neural networks. Statically determinant substructures and 

statically indeterminate substructures were assembled using a superposition approach and 

a displacement collocation approach. Typically, substructuring and submodeling 

approaches either require that the finite element nodes along the interdomain boundaries 

coincide or make use of restrictive interpolations of displacements to the boundaries of 

the local models. The global/local method proposed in reference 8 alleviates the 

requirement for nodal compatibility along the local model boundary by introducing a 

surface spline interpolation of the displacements from an independent global model to the 

boundary of a more refined local model. This uncoupled approach was further extended 

to provide global/local model interaction in an iterative approach proposed by Whitcomb 

et al. l2>l3 In addition, global/local methodology for two- and three-dimensional stress 

analysis of composite structures has been developed within a common framework by 

Knight et al. l4 

In the context of this work, model synthesis refers to collaborative methodology 

that couples or synthesizes two or more dissimilar mathematical models of multiple 
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subdomains. Myriad methods fall into this category. Examples of these methods and 

representative references include, but are not limited to, synthesis of finite element and 

boundary element methods 

finite element and finite difference methods 19,20, finite element and analytical solutions21, 

and finite element and equivalent plate solutions22. Furthermore, an extensive review of 

coupling the finite element method and boundary solution procedures has been given by 

Z i e n k i e ~ i c z ~ ~ .  In reference 23, the finite element method is generalized to encompass 

both the finite difference and the finite volume approaches. 

15,16,17 , finite element and Rayleigh-Ritz approximations", 

A new era of multi-fidelity modeling was introduced through the development of 

an alternative approach for combining finite element models with different levels of 

fidelity, which is referred to in the literature as interface technology. The concept of 

interface technology is the genesis for the multifunctional capability presented in this 

work. As such, a more extensive review of the literature is presented and the notable 

contributions are outlined. The basic concept of the interface technology was discussed 

by Housner and A m i n p ~ u r ~ ~ .  In this work, the fundamental approaches were discussed 

for mathematically coupling multiple subdomains whose grid points along common 

boundaries did not coincide. Subsequent developments performed by Aminpour et al.25 

implemented the basic concepts, extended the work to alternative approximations, and 

compared the results for representative benchmark applications. Ransom et a1.26 

advanced further the technology by recasting the interface technology in the form of an 

element, thus facilitating the use of the method for more than two subdomains. 

Moreover, the implementation of the method as an element facilitated the inclusion of the 

technology into standard commercially available finite element software codes27. Davila 



18 

et a1.28 extended further the capability for coupling not only along finite element edges as 

originally implemented but across finite element faces as well. Rose" extended the 

concept of interface technology to include geometric incompatibility as well as nodal 

incompatibility. In this work, the geometry of the subdomains is automatically adjusted 

to account for an inaccurate geometry description along the common subdomain 

boundaries and for gaps in the boundary definition, which allows for enhanced modeling 

flexibility. In addition, extensions have been developed to include geometrically 

nonlinear analysis29. The technology has been developed to provide dimensionality 

reduction for integrating three-dimensional finite element models within two-dimensional 

finite element models26. All of the aforementioned interface technology developments 

have focused on a one-dimensional interface along a curve or line. Aminpour et al.30 and 

Schiermeier et al.31 have extended the work to a two-dimensional surface interface for 

coupling three-dimensional finite element models. 

1.4. OBJECTIVES AND SCOPE 

The overall objective of this research is to formulate multifunctional methodologies and 

analysis procedures for interfacing diverse domain idealizations including multi-fidelity 

modeling methods and multi-discipline analysis methods. Specific goals of this research 

include: 

1. To formulate general methodology providing capability for multifunctional 

modeling, analysis, and solution. 

2. To identify computational aspects and related algorithms for this methodology. 

3. To apply the formulation to scalar- and vector-field applications in engineering 

science. 
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The scope of the present work includes the multi-fidelity modeling and analysis of 

interfaced domains within the same discipline as well as among multiple disciplines. The 

analysis capabilities are limited to scalar- and vector-field problems using both single and 

multiple approximation methods within a given domain. The capabilities are developed 

considering discrete changes in domain characteristics across the interfaced boundaries, 

compatibility with general-purpose finite element codes, applicability for a wide range of 

discretization methods and engineering disciplines, and cost-effectiveness related to both 

modeling and analysis time. To accomplish the objectives of the present work, numerical 

studies are performed to gain insight into the interactions among the interfaced domains 

and the computational strategies for the modeling and analysis. Prior to applying the 

method to vector-field problems, the proposed method is evaluated with regard to 

accuracy and computational implications on representative scalar-field problems. 

The organization of the remainder of the dissertation is as follows. A 

multifunctional approach for scalar-field problems is presented in Chapter 11. Single- and 

multiple-domain formulations are presented in the chapter along with a discussion of the 

spatial modeling and the computational implications, and numerical results for a 

verification test case are presented. The multifunctional approach for vector-field 

problems is presented in Chapter 111. Single- and multiple-domain formulations are 

presented in this chapter along with a discussion of the spatial modeling and the 

computational implications, and numerical results for a verification test case are 

presented. Numerical results for representative scalar-field problems in engineering 

science are presented in Chapter IV, while results for vector-field problems are presented 

in Chapter V. In addition, a discussion of extensions of the methodology to multiple 
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discipline coupling is given in Chapter V. Conclusions and recommendations are 

presented in Chapter VI. An overview of the steps in analysis and simulation is given in 

Appendix A. A derivation of the cubic spline interpolation matrices used in the 

multifunctional approach is presented in Appendix B. Details of the geometry 

representation along the subdomain interface are given in Appendix C. 
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CHAPTER I1 

MULTIFUNCTIONAL APPROACH FOR SCALAR-FIELD 

PROBLEMS 

2.1. GENERAL 

The motivation for the consideration of multifunctional approaches for scalar- 

field problems comes from the fact that methods of approximation such as Ritz, Galerkin, 

and other weighted residual methods are based on weak statements of the differential 

equations governing the system response. The differential equation is said to describe a 

scalar-field problem if the dependent variable is a scalar and requires only the 

specification of magnitude for a complete description. The scalar-field problem is a basic 

form of the governing differential equations and thus lends itself to forming the 

mathematical foundation for the general methodology developed herein. Representative 

examples of the scalar-field differential equations in two dimensions are considered 

herein, and the mathematical statement is formulated. The concepts developed here are 

directly applicable to one-dimensional scalar-field problems; however, the development 

is not included in the interest of brevity. The general form of the differential equation 

describing a scalar-field problem for domain L2 (see Figure 2.1) is given by the Poisson 

equation, which is of the form 

- V . ( k V u ) = Q  i n Q  (2.1) 

du 
dn 

subject to the natural boundary condition, k-  + h(u - u, ) = q on f, and essential 

P du au au 
dn ax aY 

boundary condition, u = on r . The normal derivative, - = - n, + - ny , and n, 
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and ny are the components of the outward normal vector, n, to the bounding surface, r, of 

domain, R. In Eq. (2. l),  the variables k and Q are known coefficients, and the primary 

variable or dependent variable is u, which is a function of the independent variables x and 

y .  In the natural boundary condition, the variables, h and u,, are the convection 

coefficient, and the far-field value of the primary variable, respectively. The terms, q, 

au au 
ax aY 

k- , and k- are the secondary variables that may be described on a portion of the 

P boundary, Ts. The primary variable, u, is specified on the boundary, r , and its 

prescription to the boundary value, U , constitutes the essential boundary condition. The 

complete boundary is defined as r = rp + rs. 

+x 

Figure 2.1. Geometric Representation of Two-Dimensional Domain. 

2.2. DISCIPLINE SPECIFICS 

Equations of the type of Eq. (2.1) arise in many fields of engineering science such 

as elasticity, heat transfer, fluid mechanics, and electrostatics.  redd^^^ has tabulated 

several examples. In this work, the Poisson equation is applied to problems in the solid 

mechanics and fluid mechanics disciplines. 
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2.2.1. Solid Mechanics 

For applicability of the Eq. (2.1) in solid mechanics, consider a prismatic bar of 

constant cross section subjected to equal and opposite twisting moments at the ends as 

shown in Figure 2.2(a). 

(a) Geometry (b) Partial End View 

Figure 2.2. Geometric Configuration of Prismatic Bar. 

In general, the cross sections normal to the axis of the bar warp. As a fundamental 

assumption, the warping deformation is taken to be independent of the axial location and 

is given by 

w = W(X,Y> 

Assuming that that no rotation occurs at the end z=O and that the angle of rotation, 8, is 

small, the displacement components, u and v, in the x and y coordinate directions, of an 

arbitrary point, P, P(x, y ) ,  in a plane for constant z ,  are respectively, 

u = -(r&)sina = -y& 

v = (r0z)cosa = x& 
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where the angular displacement of a line segment, OP, from the origin, 0, to an arbitrary 

point, P, is 8z and a is the angle between OP and the x axis (See Figure 2.2(b)). By 

substituting Eq. (2.2) into the strain-displacement relations, the following are obtained 

E, = y, = E  = E ,  = o  Y 

aw aw 
y z X = - - y e  ; y =-++e ax zY ay 

The three-dimensional stress-strain relations given in terms of Lame’s constants for a 

linear isotropic solid are given by 

ox = ~ G E ,  + i2e ; zXY = G y ,  

oY = ~ G E ,  + i2e ; zYZ = GyYZ 

o, = ~ G E ,  + i2e ; Z, = Gy,, 

VE E 
where e=E,+Ey+E,, i Z =  , and G =- 

(1 + v)(l - 2v)  2(1+ v )  . 

The shear modulus, G, and the quantity, h, are referred to as the Lame’s constants, and 

the modulus of elasticity, E ,  and the Poisson’s ratio, v, are material properties. 

Substituting the strain-displacement relations of Eqs. (2.3) into the stress-strain relations 

gives 

ox ‘ Z X Y  = o  =oz = o  Y 

Then, the three-dimensional equations of equilibrium, 
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+Fy = O  arxy aoy aryz 

ax ay az +-+- 

arxz aiyz aoz 
ax av az +-+- +Fz = O  

with negligible body forces, simplify to the following equations: 

First, note that the stresses in Eq. (2.4) satisfy exactly the first two equilibrium equations 

above (see Eq. (2.5)). Next, Eq. (2.4) can be combined into a single equation by 

differentiating the expressions for zzx and zzy byy andx, respectively, and subtracting the 

resulting equations. These operations yield the compatibility equation given by 

dy dx 

The stress in a bar of arbitrary cross section may thus be determined by solving the third 

equation of equilibrium given in Eq. (2.6) along with the equations of compatibility given 

in Eq. (2.7) and the given boundary conditions. 

This torsion problem is commonly solved by introducing a single stress function. 

If such a function, $(x, y ) ,  the so-called Prandtl stress function, is assumed to exist, such 

that 

then, the equations of equilibrium are automatically satisfied. The equation of 

compatibility becomes, upon substituting these expressions for the shear stress, 
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Therefore, if the compatibility requirement is to be satisfied, the stress function, $, must 

satisfy Poisson’s equation, Eq. (2.1). The primary variable, u, the constant, k, and the 

source variable, Q, are represented by the stress function, $, the inverse of the shear 

modulus, G, and twice the angle of twist per unit length, 8, respectively. Moreover, the 

stress function, $=constant on the surface of the bar. 

2.2.2. Fluid Mechanics 

For a two-dimensional incompressible irrotational flow, expressions are given for 

the velocity components, v, and vy, in terms of the x and y coordinate directions, 

respectively. The velocity components should satisfy the continuity condition 

and the irrotational flow condition 

In terms of the stream function, y ~ ,  the components are given by 

au au 
aY ax vx =- and v =-- 

and in terms of the velocity potential, m, the components are 

am 
aY 

and v =-- . VX =-- 
am 
ax 

(2.10) 

(2.11) 

Substituting the velocity components, v, and vy, from Eq. (2.10) into the irrotational flow 

condition Eq. (2.9), one obtains 



27 

a2y a2y 

ax2 ay2 
-+-=o (2.12) 

Note that the velocity components in terms of the stream function given in Eq. (2.10) 

satisfy the continuity condition, Eq. (2.8) identically. Hence, Eq. (2.12) governs the flow 

in terms of the stream function, y ~ ,  and is in the form of the Poisson Equation, Eq. (2.1) 

where the primary variable, u, the constant, k, and the source variable, Q, are represented 

by the stream function, y ~ ,  the density, p, and the mass production, (5 (normally zero), 

respectively. 

Substituting the velocity components, v, and vy, from Eq. (2.11) into the 

continuity equation, one obtains 

a2m a2m 
ax2 ay2 

-+-=o. (2.13) 

Note that the velocity components in terms of the velocity potential given in Eq. (2.11) 

satisfy the irrotational flow condition, Eq. (2.9), identically. Eq. (2.13) governs the flow 

in terms of the velocity potential, m, and is in the form of the Poisson Equation, Eq. (2. l),  

where the primary variable, u, the material constant, k, and the source variable, Q, are 

represented by the velocity potential, m, the density, p, and the mass production, (5 

(normally zero), respectively. 

2.3. SINGLE-DOMAIN FORMULATION 

In this section, multifunctional methodology for a scalar-field problem over a 

single domain is presented in terms of weighted residuals. The method of weighted 

residuals is used extensively in fluid mechanics and thus the potential problem is 

formulated from this perspective. While the intent of this work is to develop general 
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methodology for multiple domains, the salient features of the weighted residual method 

formulation may be investigated and discussed using the single domain. Consider the 

general Poisson equation for a two-dimensional domain for field variable, u 

- kV2u = Q (2.14) 

in a domain, a, bounded by I?. In general, the boundary, I?, can have mixed boundary 

conditions with the primary variable, u, prescribed on r" and the secondary variable, the 

flux, q, prescribed on the remaining part of the boundary, I?' (see Figure 2.1). 

In the method of weighted residuals, an approximate solution, , is used in 

expressing V 2 u ,  then the differential equation, Eq. (2.14), will no longer be satisfied, 

and this lack of equality is a measure of the departure of from the exact solution. The 

lack of equality is called the residual, R, and is written as 

R = -kV2u -Q  # 0 .  

The residual is orthogonalized by a set of weight functions, mi and averaged over the 

domain. This residual may be written as 

(- k V 2 c  - Q)mi dQ = 0.  
Q 

(2.15) 

n 

i=l 
The solution for is sought in the form = xaiYi + Yo. The functions, Yi, are usually 

called trial functions, and ai are arbitrary constants. The trial functions satisfy the 

homogeneous boundary conditions, while YO satisfies the nonhomogeneous boundary 

conditions. Posing the problem to be solved in a generalized weighted residual form33'34 

and relaxing the requirement for the approximate solution to satisfy all boundary 

conditions, the weighted residual statement may be written in the form 
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where the residual in the satisfaction of the boundary conditions is orthogonalized by a 

secondary set of weight functions,. , and the differential equation set is represented by 

A(u) = { ;:!\} = 0 

in the domain, a, together with the boundary conditions 

B(u) = (y'::J = 0 

on the boundary, r, of the domain. As implied by the matrix notation used previously, 

the solution sought may represent a scalar quantity or a vector of several variables. 

Similarly, the differential equation may be a single equation or a set of simultaneous 

equations. For the system at hand, a scalar quantity is sought and the differential 

equation is a single equation. Here, A(u) = -V2u - Q =0, and the essential and natural 

boundary conditions, respectively, are represented by 

~ ~ ( u ) = u - i i = ~  on r P  

and 

au - 
~ ~ ( u ) = k - - q  = O  on rs. 

an 

Therefore, considering the approximate solution, E ,  we may write the general integral 

form of the differential equation governing the potential flow as 
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Note that the trial function may be selected so as to satisfy the essential and the natural 

boundary conditions; thus, the boundary integrals in Eq. (2.16) are identically zero. In 

this formulation, only the essential boundary conditions, i. e., 

E - i ~ = o  o n P  

are assumed to be automatically satisfied by the choice of the trial functions. Therefore, 

Eq. (2.16) is rewritten as 

(2.17) 

or 

d; a; a; - 
where-=-nn,+-n Y andm2 = @ .  

dn ax aY 

In general, the method of weighted residuals does not strictly require the 

incorporation of natural boundary conditions into the weak formulation, as in the Ritz 

method. However, if the operator permits the weak formulation, continuity requirements 

on the primary variable and its derivatives may be relaxed. Moreover, if integration by 

parts is possible, one may reduce the order of the highest derivative in the integral form 

to eliminate the difficulty of selecting the appropriate weight functions. Thus, in the 

formulation herein, the order of differentiation on the primary variable in the integral 

equation, Eq. (2.17), is reduced to obtain the weak formulation. In addition, 

acknowledging that the primary variable, u, is approximated by 

subsequent development is presented in terms of u. Application of the divergence 

theorem to Eq. (2.17) yields 

, for simplicity, the 
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Note that the boundary is presumed to consist of boundaries on which the primary 

variable is specified and boundaries on which the secondary variable is specified, and 

r = r p  + rs . Therefore, the boundary integral on r, may be expressed as 

au 
r $k[  E n x  +%nY )@ d r  = !k( E n x  + $n  )drP + is k[ E n x  + $n  )did 

Noting that, in the method of weighted residuals, the weight function, @, satisfies the 

homogeneous boundary conditions for the primary variable ( 2 .  e., essential boundary 

conditions). Thus, @=O on f. Therefore, the boundary integral on f is identically zero 

and Eq. (2.18) may be rewritten as 

du 

sz r’ 

Since the weight functions, @ and G,  are arbitrary, they may be chosen, without loss of 

generality, such that, @ = @ . Therefore, 

r’ 
- $q@ d r s  = 0 

or 

k a u a m  d u d @  = LQ@dQ + $q@ d r s  (2.19) 

The integral form of Eq. (2.19) forms the basis of finite element approximations, which is 

summarized in a subsequent section. 

Q j [  ax ax ay ay r’ 
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2.4. MULTIPLE-DOMAIN FORMULATION 

In the multiple domain method, the domain of the problem is subdivided into a 

number of smaller subdomains. The method is quite similar to the subdomain collocation 

method, which is another weighted residual method. In the subdomain collocation 

approach, the domain is divided into as many subdomains as there are adjustable 

parameters. These parameters are then determined by making the residual orthogonal to 

a weight function in an integral sense over each subdomain. Here, as in the single- 

domain formulation, methodology is presented formulating the general method of 

weighted residuals for multiple domains by considering the Poisson equation for a two- 

dimensional domain for a field variable, u. Then, 

-kV2u = Q  (2.20) 

in the entire domain, Cl, bounded by I?. For simplicity, the multiple-domain formulation 

is presented for two subdomains, C l 1  and C l 2  (see Figure 2.3). Independent 

approximations and weight functions are assumed in each of the subdomains and 

continuity conditions are used to provide for a continuous solution across the subdomain 

interfaces. Thus, Eq. (2.20) is satisfied in each subdomain, independently, i.e., 

-klV2u1 =Ql in Cl1 and -k2V 2 u2 =Q2 in Cl2 

subject to the boundary conditions on the subdomain boundaries, r1 and r2. Although 

Eq. (2.20) is assumed for uniform constant, k, throughout the domain, it is permitted to be 

different in each subdomain. That is, constants, kl and k2, are used for subdomains C l 1  

and C l 2 ,  respectively, to allow for the general case of nonhomogeneous material. 
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At this point, differences between the single- and multiple-domain approaches 

become evident. First, the domain, a, is now represented by the union of ns subdomains, 

Q, such that 

i = l  

Second, the bounding surface, r, of the domain, a, is the union of the exterior surfaces, 

rp, of the ns subdomains, Q, such that 

i = l  

E In general, these exterior surfaces, ri , may involve mixed boundary conditions with the 

primary variable, u, prescribed on r: and the secondary variable, the flux, q, prescribed 

on rfsuch that 

rp =r: +r/. 

Finally, as a result of the subdomain modeling, the collaborative effort to solve the 

I problem involves an interior surface interface boundary, ri , and the information transfer 

across the boundary. Hence, the boundary surface for the th subdomain is given by 

ri =r: +r;S +ri I 

The boundary conditions may be written as 

du1 u1 -Ul = 0 on I'f and kl --i& = 0 on rf 
dn 

and 
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'2  \ 

Figure 2.3. Boundary Definitions for Two-Dimensional Subdomains. 

The residual for each domain is orthogonalized by a set of weight functions, mi and is 

written as 

j(- k1V2ul - Ql)@l d Q 1  = 0 
Ql 

and 

n 

1 
where the approximate solution is sought in the form = c aliYli  + Yoi and 

n 

1 
c2 = Ca2iY2i + Yoi .  The functions, Yoi ,Yli, and Y2i, are trial functions, and ali and a2i 
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are sets of arbitrary constants. Using the general form outlined in the single-domain 

formulation (i.e., j@A(.")dQ + $5B(u")dT = 0) ,  for each subdomain, one may write 
Q r 

where the residual in the satisfaction of the boundary conditions is orthogonalized by a 

secondary set of weight functions,qi , for subdomain i. Therefore, considering the 

approximate solution, E1 and E 2 ,  we may write the general integral form of the 

differential equation governing the potential flow for subdomain 1 as 

and for subdomain 2 as 

Again, we will presume that the essential boundary conditions, i. e., 

El -cl = O  on rf 

and 

G2 -z2 = O  on rl 

are automatically satisfied by the choice of the functions, E1 and E2 . Therefore, for 

subdomain 1, Eq. (2.21) is rewritten as 

jml(-k1V2El -el (2.23) 
Ql 

or in its expanded form 
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a;. aci aci - - 

an  ax ay y i  
w h e r e 1  = -nxi + -n and 5 1 2  = and 5 2 2  = @2. Similarly, the weighted 

residual form for subdomain 2, 

The order of differentiation on the primary variable in the integral equations, Eq. 

(2.24) and (2.25), is reduced to obtain the weak formulation. In addition, acknowledging 

that the primary variables, u1 and 24, are approximated by and , for simplicity, the 

subsequent development is presented in terms of u1 and u2. Utilizing the divergence 

theorem, Eq. (2.24), can be rewritten, for subdomain 1, yields, 

and similarly, for subdomain 2, 

(2.27) 

Note that the domain boundary is presumed to consist of boundaries on which the 

primary variable is specified, boundaries on which the secondary variable is specified, 
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and boundaries at the subdomain interface. Thus, for subdomain i, ri = Tf + rf + r:. 

Here, the boundary on the interface is assumed to be conforming (i.e., represents same 

geometry) and rf = TI .  Therefore, the boundary integral on Ti, may be expressed as 

Note that mi = 0 on rf. Eq. (2.27) can be rewritten, for subdomain 1, as 

Since the weight functions, 'D1 and 1, are arbitrary, they may be chosen, such that, 

Q1 = 5 1 .  Therefore, 

du 
dn 

- kl L m l d r 1  - jLflmldrf 

r1 r; (2.28) 

Similarly, for subdomain, @, 
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In general, for the multiple domain case, the approximation for the primary 

variable (e.g., the potential field) must satisfy the following conditions: 

i. The primary variable must be continuous and single valued in the subdomain. 

ii. The primary variable must be continuous across the interdomain boundary. 

iii. The primary variable on the subdomain boundary must satisfy the boundary 

conditions. 

If the requirement to satisfy interdomain continuity is relaxed, an additional boundary 

condition is used, namely, 

(2.30) 

u1 -u2  = O  on rl. 

This constraint can be satisfied in the integral sense as 

jA(ul - u 2 ) d r = 0  on r1 
r1 

where iL is a Lagrange multiplier associated with the secondary variable along the 

common subdomain boundary. Therefore, combining Eqs. (2.28) and (2.29) for the 

entire domain, and including the continuity integral at the interdomain boundary yields 

= O  

where for subdomain, i, 4 i ,  are the secondary variables along the interdomain 

du. au. aui 
dn ax aY 

boundary, qi = 2 = 2 n x i  + -n Note that the normals on the interdomain Yi  ' 
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boundary are equal and opposite (see Figure 2.3). That is, n1 = -n2 where 

ni = nxi i + nyi j , and it follows that, 41 = -42  = 4 . Therefore, 

or rearranging 

+ 
1 

Note that Eq. (2.32) is written as a single equation for convenience and represents the 

sum of terms related to the residual in the governing differential equation within each 

subdomain and the continuity constraint for the primary variables along the common 

subdomain boundary. However, each of the bracketed terms in Eq. (2.32) must equal 

zero individually. These bracketed terms are identical to Eqs. (2.28), (2.29), and (2.30) 

which must be satisfied independently. 

In this formulation, the two primary field variables, u1 and u2 are approximated 

independently, and continuity requirements between these two approximations are 

satisfied along the subdomain interface boundary. The use of these approximations and 
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the associated continuity requirements gives rise to the classification of the formulation 

as a two-approximation approach. 

Now consider a configuration that makes use of a third approximation for the 

primary variable along the subdomain interface boundary in addition to the 

approximations given along the boundary of each of the subdomains. This primary 

variable, v, along the interface is assumed to be independent of the primary variables, u1 

and u2, of the subdomains to which it is attached. These independent approximations 

give rise to continuity requirements along the interface of the form 

v-u1 = O  on r1 

v-u2  = O  on r1 

These constraints can be satisfied in the integral sense as 

j l l ( v - u l ) d r  I = O  on r1 
r1 

j12(v -u2)d r  I = O  on r1 
r1 

(2.33) 

(2.34) 

where 1 1  and 1 2  are Lagrange multipliers or weight functions in the form of the 

secondary variable along the interface. An additional continuity requirement in terms of 

the secondary variable along the common subdomain boundary is required. These 

secondary variables, 41 and i 2 ,  are assumed to be independent of each other. These 

independent approximations give rise to continuity requirements along the interface of 

the form 

i1 +i2 = O  on r1 

These constraints can be satisfied in the integral sense as 
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j j( i l  + i 2 ) d r  I = 0 on r1 
r1 

(2.35) 

where is a Lagrange multiplier or weight function of the form of the primary variable 

along the interface. Combining Eqs. (2.28) and (2.29) for the entire domain and 

including the three continuity integrals along the interdomain boundary, Eqs. (2.33), 

(2.34), and (2.35), yields 

or rearranging 

Again, note that Eq. (2.36) is written as a single equation for convenience and represents 

the sum of terms related to the residual in the governing differential equation within each 

subdomain and the continuity constraints for the primary and secondary variables along 

the common subdomain boundary. Each of the bracketed terms in Eq. (2.36) must equal 

zero individually. These bracketed terms are identical to Eqs. (2.28), (2.29), (2.33), 

(2.34), and (2.35), which must be satisfied independently. 
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The integral form of Eqs. (2.32) and (2.36) forms the basis for the subsequent 

spatial modeling approximations. The spatial modeling approximations are discussed in 

detail in the next section. Eqs. (2.32) and (2.36) may be generalized for more than two 

subdomains and for multiple interfaces by 

(2.37) 

and 

(2.38) 

where N,, is the number of subdomains in which the entire domain is subdivided, NI  is 

the number of interfaces connecting the N,, subdomains and n,, (i) are the number of 

subdomains attached to interface i. For example, for one interface connecting two 

subdomains, Eq. (2.38) yields in its expanded form 
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which is identical to Eq. (2.36). 

2.5. SPATIAL MODELING FOR MULTIPLE DOMAINS 

Although this section is focused on spatial modeling of multiple domains using a 

multifunctional development, a brief discussion of spatial modeling for a single domain is 

given first, followed by a more detailed discussion for multiple domains. Thus far, a 

multifunctional approach based on weighted residuals has been formulated. This 

approximation technique provides a mechanism for finding approximate solutions to 

problems in mathematical physics and engineering science such as those represented by 

the Poisson problem. Selection of the approximating and weighting functions for 

complex geometrical shapes and boundary conditions poses a major difficulty for 

weighted residual methods. In addition, the methods were generally not regarded as 

being computationally competitive compared to the traditional finite difference method. 

However, weighted residual methods offer a versatile means by which to formulate finite 

element equations where no functional is available. Hence, many of the difficulties 

associated with this class of methods are alleviated. The derivation of discrete equations 

is an essential component of the approximation technique. Thus, several discretization 

approaches are outlined in the next section. 
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2.5.1. Overview of Discretization Methods 

Various forms of spatial modeling or discretization of the continuum problem 

defined by the differential equations can be used. These forms include, but are not 

limited to, the finite difference method, the finite volume method, the finite element 

method, and the boundary element method. In such spatial modeling, the infinite set of 

numbers, representing the unknown function or functions is replaced by a finite number 

of unknown parameters. A brief discussion of each of the aforementioned modeling 

methods is given here to provide the foundation for discussion of interfacing such diverse 

methods, which is presented in subsequent subsections. 

The finite difference method 

Of the various forms of spatial modeling, one of the simplest is the finite 

difference method. The finite difference method gives a pointwise approximation to the 

governing equations. In the finite difference approximation of a differential equation, the 

derivatives in the equation are replaced by differential quotients that involve the values of 

the solution at discrete mesh points of the domain. The resulting discrete equations are 

solved for values of the solution at the mesh points, after imposing the boundary 

conditions. While finite difference techniques are widely used in fluid dynamics and heat 

transfer and can treat fairly difficult problems, they become hard to use when irregular 

geometrical shapes or unusual boundary conditions are encountered. In addition, because 

it is difficult to vary the size of different cells in particular regions, the method is not 

suitable for problems of rapidly changing variables, such as stress concentration 

problems. These adverse attributes are particularly significant in structural analysis. 
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The finite volume method 

The finite volume method evolved in the early seventies via the finite difference 

approximations and has many proponents in the field of fluid mechanics. The method 

takes as its starting point the physical conservation laws in integral form written for small 

control volumes around every discrete point. Modifying the shape and location of the 

control volumes associated with a given discrete point, as well as varying the rules and 

accuracy for the evaluation of the fluxes through the control volume, gives the method 

considerable flexibility. Unlike the finite difference method, the finite volume method 

can readily handle arbitrary mesh orientation thus making it more amenable to problems 

of rapidly changing variables. In addition, by direct discretization of the integral form of 

the conservation laws, the basic quantities (e.g., mass, momentum, and energy) will be 

conserved at the discrete level. Like the finite difference method, the finite volume 

method has been shown to be a special case of the finite element method with non- 

Galerkin weight func ti on^^^. 

The finite element method 

The finite element method consists of representing a given domain by an 

assembly of smaller, geometrically simple subdomains or elements over which the 

approximation functions are systematically derived. Then, Ritz-Galerkin approximations 

of the governing equations are developed over each element. Finally, the equations over 

all elements of the collection are connected by continuity of the primary variables. In the 

mathematical literature, the names Petrov-Galerkin are often associated with the use of 

weighting functions such that @ # N , and the names Bubnov-Galerkin are often 

associated with the use of weighting functions such that @ = N , where in the finite 
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element method N are the element shape functions. The latter method is often referred to 

as the Galerkin method. The resulting system of equations is sparse, banded, symmetric, 

and positive definite. The finite element method is especially well suited for handling 

arbitrary shapes or domains. To obtain good accuracy in regions of rapidly changing 

variables a large number of small elements must be used. Furthermore, the method is 

widely used for the analysis of many engineering problems involving static, dynamic, and 

thermal stresses of structures. 

The boundary element method 

The boundary element method is an alternative to the finite element method. 

Like the finite element method, the boundary element method uses nodes and elements to 

discretize the boundary of the domain. Thus, compared to the finite element method, the 

dimensionality is reduced by one. The governing differential equations are transformed 

into integral identities, which are applicable over a surface or boundary. These integrals 

are numerically integrated over the boundary, which is divided into small boundary 

segments. The method may be used to model accurately the response in the domain 

bounded by its mesh. The method can easily accommodate geometrically complex 

boundaries. Furthermore, since all the approximations are restricted to the surface, the 

method can be used to model regions with rapidly changing variables with better 

accuracy than the finite element method. Complex kernel routines are required to 

determine the response for the interior of the domain. Hence, the computational expense 

increases quickly if the response at several interior locations is needed. In addition, for 

nonlinear problems, the interior must be modeled; thus losing the advantage of reduction 
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in dimensionality. Unlike the finite element system matrix, the analogous boundary 

element matrix is small, fully populated, and unsymmetric. 

Each of the aforementioned discretization approaches has advantages and 

disadvantages specific to the domain of the physical problem or the discipline within 

which it is applied. To overcome the disadvantages of the individual methods, coupled or 

collaborative methods have been developed. Collaborative methods couple two or more 

discretization approaches and make use of a given approach when and where it is best 

suited. The interaction between the methods is an essential feature related to the 

robustness and accuracy of the combined methods and is a subject of discussion herein. 

Moreover, this work focuses on the application of the multifunctional method developed 

here to the finite difference and finite element methods and their coupling. 

Computational methods using finite-differences for fluids experiencing field 

discontinuities such as shock-waves and flow separations have been proven to be 

efficient solution techniques. The finite element method has proven to be efficient in 

solving for the response of complex aerospace structures, which may contain internal 

discontinuous members such as spars, ribs, and bulkheads found in fuselage and wing 

structures. In addition, coupled finite differencehnite element methods have been 

proposed that make use of the strengths of the each of the modeling methods in the 

solution of the aeroelastic problem and elasticity problems in references 36 and 19, 

respectively. Thus, both spatial modeling approaches and their coupling will be 

discussed in turn. 
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2.5.2. Overview of Single-Domain Spatial Modeling 

Finite element discretization 

For a single domain, the finite element equations may be obtained by rewriting 

Eq. (2.19) over an element domain as 

(2.39) 

S 

where superscripts on the domain, a, and boundary surface, r , integrals denote 

integration over the element. In later sections, numeric subscripts will be used to denote 

element integration within the specified subdomain. The primary variable is 

approximated over the element domain by u = Nu,, and using the Galerkin method, the 

vector of weight functions is given by @ = N . Substituting approximations into the 

integral equation given in Eq. (2.39) yields 

[ j -- aN +-- aNT u, = jNTQdne + j N T q d r S e  
fie rSe 

ax ax ay ay fie 

or 

k,u, =fe 

where k, is the element stiffness matrix, u, is the vector containing the generalized 

primary variables, and fe  is the element force vector containing the generalized secondary 

variables. The element field quantities, k, u, and f, are denoted by a subscript, e. 

Assembling these element equations over the entire domain and enforcing continuity of 

the primary variable at the interelement boundaries yields the system of equations given 

by 

K u = F  
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; u is the assembly of all of the nodal 
nelem 

where K =  c k 
e=l f i e  

degrees of freedom associated with the primary variables; and 

nnodes 
F =  c j N T Q d Q e +  I N  T- qdl- se  

Finite difference discretization 

In the finite difference methods, derivatives are approximated by difference 

expressions that transform the derivatives appearing in the partial differential equations to 

algebraic equations. For an elliptic partial differential equation, usually time- 

independent, the methods result in a system of algebraic equations that are solved using a 

direct or iterative solution technique. For hyperbolic and parabolic partial differential 

equations, a set of algebraic equations is obtained. These equations are solved either 

explicitly or implicitly. For the explicit solution, each equation will yield one unknown. 

The matrix of unknown variables is a diagonal matrix and the right-hand-side vector of 

the system is dependent on the variables at previous times. For the implicit solution, the 

equations are coupled and must be solved simultaneously. Since the system equations are 

coupled and more than one set of variables is unknown at the same level, the matrix to be 

inverted is non-diagonal. In most cases, however, the structure of the matrix will be 

rather simple, such as a block pentadiagonal, block tridiagonal, or block bidiagonal. The 

truncation errors, stability and consistency of the numerical scheme are aspects that must 

be considered in the development of the methods. The difference expressions are 

obtained by Taylor series expansion, using forward, backward or central expansions. 

Zienkiewicz and Morgan37 have shown that the finite difference method of approximation 
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is a particular case of collocation with locally defined basis functions. In the collocation 

method, the unknown weight function parameters are determined by forcing the residual 

in the approximation to vanish at N selected points in the domain. Upon substitution of 

the approximation function into the differential equation, the equations can be recast in 

weighted residual form by selecting mi = S(x -xi ) . The weighted form of the residual 

reduces to the evaluation of the partial differential equations using the approximate 

solution evaluated at the N selected mesh points. For a second-order ordinary 

differential equation, the approximate solution, c , may be given as a function of the 

solution at neighboring points (see Figure 2.4) as 

iC =ui-1Nfpl +uiNf + ~ i + l N f + ~  

where Nf are locally defined quadratic basis functions represented by 

x(he +x) ; Ne = e 
1-1 

Ne  = (he  - x)(he + X) 
2(he)2 ' 

z+1 @ " I 2  
Z N .  = -  

2(he)2 ' 

element e 
I4 w 

i-1 i i+l 
I 

Figure 2.4. One-Dimensional Finite Difference Element Configuration. 
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The locally defined quadratic basis functions, Nf , given here in the Cartesian coordinate 

system, may be written in the element natural coordinate system, 6, as 

1 1 
2 2 

Nf-1 = --((1- () ; Ni" = (1 - (2);  Ni"+, = -((1+ e )  
where C=x/h". Note that -1 I 5 I 1. These basis functions are the standard Lagrangian 

shape functions for three-node one-dimensional finite elements. This derivation for one- 

dimensional problems may be extended to two- and three-dimensional problems. The 

derivation is given for two-dimensional problems considering the bi-quadratic shape 

functions for a nine-node two-dimensional finite element. A schematic of the finite 

difference template and the associated finite element are shown in Figure 2.5 where the 

open circles represent grid points in the five-point finite difference template used to 

represent second-order derivatives. 

The shape functions for a nine-node q~adr i la te ra l~~ are given in Table 2.1. For 

example, the shape function at point z,j-1 is given by 

1 = 1 (I - 5 2  11 - q )  - - 1 (1 - c2 11 - q 2 ) .  
2 Ni,j- 

Similarly, 

Ni+l, = - 1 (1 + c)(l- q2)-  - 1 (1 - c2 11 - q 2 ) ,  
2 2 

1 1 
2 2 

Ni-l, = - (1 - c)(l- q )- - (1 - 5 11 - q 2), 

and 

Ni,j = (1 - (2 11 - q 2 ) .  
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Then, 

and 

The standard finite difference representation follows by direct substitution. This 

specialization of the finite difference method as a form of the generalized method of 

weighted residuals forms the basis for its inclusion in this multifunctional derivation. 

Figure 2.5. 
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For a single domain, as in the finite element method, the finite difference 

equations may be obtained by interrogating the weighted residual equations over an 

element domain where the element, e, surrounds node i (see Figure 2.5). The 

approximate solution for the primary variable is given by 

M 

m=l 
= C N m u m  or u = Nu, 

where M is the number of shape functions over the element, and the weight function, mi, 

is given by the Dirac delta function, S(x -xi ,y  -vi) = S(xi ,vi). Note that the subscript 

i on the weight function is used to denote the subdomain, while the subscript i on the 

coordinate values, x andy, is used to represent the point in the physical domain at which 

the Dirac delta function is evaluated. Therefore, Eq. (2.39) becomes 

dx = - 
W dS(x -xi) 

Using the identities j f ( x ) s ( x  - xi)dx = f ( x i )  and If(.) 
dx 

- W  - W  

(See Bracewel13*), the element equation reduces to 

For the second derivative difference approximation, the number of shape functions of an 

T element, M=3 and u, = {ui-l ui ui+l}.  Therefore, as in the finite element method, 

the resulting finite difference equations may be written in matrix form as 

k,u, =fe 
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2 1 ax 

where k, is the finite difference “element stiffness” matrix, ue is the vector of generalized 

primary variables and f, is the finite difference generalized force vector. Assembling the 

element equations yields 

K u = F  

where u contains all of the nodal degrees of freedom associated with the primary 

variables, 

2 x=xi ay x=xi 

r 1 

and 

1 

While a single spatial modeling approach (ie. ,  the finite element method or the 

finite difference method) is used for the single domain formulation, subdomain modeling 

permits multiple discretization strategies to be used in a collaborative manner. These 

discretization strategies include homogeneous approaches in which the same 

discretization method is used in each subdomain and heterogeneous approaches in which 

different discretization methods are used amongst the subdomains. Each of these 

discretization strategies is discussed in the following sections. 
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Table 2.1. Shape Functions for a Nine-Node Quadrilateral Finite Element. 

2 

Secondary Terms of Shape Functions 
1 
2 

1 
2 

- - Ni, j -1  

- - Ni, j -1  1 
TNi+l,j 

1 
4 

+-Ni,j 

2.5.3. Multiple-Domain Modeling - Homogeneous Discretization 

In this context, homogeneous discretization approaches are applicable to multiple 

subdomain discretization. These approaches make use of a single discretization method 

among all subdomains in which the domain is subdivided. Of the many spatial modeling 

approaches, this work will focus on the finite element and the finite difference methods. 
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Two-approximation interface modeling 

For homogeneous domain discretization developed herein, Eq. (2.32) is used to 

provide the mathematical basis. The two-approximation formulation, for both the finite 

element (FE) and finite difference (FD) methods, may be obtained by rewriting Eq. (2.32) 

over an element domain as 

au, a q  +--)a; au, am, +i;k2[-- au2 am, +--)a; au2 am, 
Ql j e k l [ x r  ay ay ax ax ay ay 

Note that the integration over the common subdomain boundary, rl, is considered only 

for element edges along that boundary. 

The form of Eq. (2.41) for the two (FE and FD) methods differs by the form of 

the element shape functions and the approximation selected for the weight functions, @. 

For the generalized element expansion of subdomain i, the independent approximations 

for the element generalized primary variables, (i. e., displacements or velocities), interface 

secondary variables (Le., tractions or fluxes), and the weight functions associated with the 

secondary variables, are, respectively 

ui =Niuei  ; G = R i a  and hi = R .  1 

where a is a vector of unknown coefficients associated with secondary variable, q , and 

N and R are matrices of interpolation functions for the element primary and secondary 

variables, respectively. The interpolation functions in the matrix R are assumed to be 

constants for linear finite elements and linear functions for quadratic finite elements. 



57 

Substituting these approximations into Eq. (2.41) yields an integral equation in terms of 

the weight function, @ , which is given by 

where for i=l,2 

kPi = (-l)i+l JRTNi dl-'" , 

rIe 

kSi = (-l)i j@TRi dl- I" , 

rIe 

and 

Assembling the element equations over the entire domain, enforcing continuity of the 

primary variable only within each subdomain and assembling the contributions along the 

element edges on the common subdomain boundary, and noting that uel and ue2 and 

fel and fez are completely uncoupled, yields the system of equations given by 
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> (2.42) 

The system of equations given in Eq. (2.42) is obtained based on the initial development 

of the weighted residual statement, from Eqs. (2.28) and (2.29), 

subject to the constraint equation, Eq. (2.30), 

j/z(ul - u2 )d r1  = O  on r1 . 
r1 

Here, the first two matrix equations in Eq. (2.42) are obtained from the weighted residual 

statement for each subdomain, Eqs. (2.28) and (2.29), and the third matrix equation is 

obtained from the constraint on the primary variables along the common subdomain 

boundary, Eq. (2.30). 

For the finite element modeling, the weight functions are taken to be the finite 

element shape functions. That is, mi = N i  , and thus, for i=1,2 

ksi = (-l)i jNTRi drIe , 
rIe 

(2.43) 

and 
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T 
Si 

Here, note that at the element level, kpi = k , and consequently, at the global system 

level, Kpi = K  T . 
si 

For the finite difference modeling, the weight functions are taken to be the Dirac 

delta function. That is, mi = 6 i ( x - x i , y - y i ) = 6 i ( x i , y i ) ,  and thus, for i=1,2 

kpi = (-l)i+l IRTNi dl- Ie , 

rIe 

(2.44) 

and 

fei = j ~ i ( x i , . ~ i ) ~ i d ~  + j ~ i ( x i , . ~ i ) q i  = ~ i ( ~ i , ~ i ) +  qi(xi,~i). 
a; qse 

Three-approximation interface modeling 

For the three-approximation formulation, Eq. (2.36) is used to provide the 

mathematical basis for the development. In previous work by Aminpour et al.25, a 

similar formulation based on the principle of minimum potential energy is implemented 

in the form of an element. In that work as is the case in this study, the interdomain 

interface boundary is discretized with a mesh of evenly-spaced pseudo-nodes (open 
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circles in Figure 2.6) that need not be coincident with any of the interface nodes (filled 

circles in the figure) of any of the subdomains. 

Pseudo-nodes Finite element 
/I nodes 

Figure 2.6. Interface Definition. 

The generalized element equations may be obtained by introducing the continuity 

requirements into the weighted residual statement. Eq. (2.36) can be rewritten over an 

element domain as 

Note that in the potential energy f~ rmula t ion~~ ,  the continuity of the secondary variables 

was satisfied through the subsidiary conditions obtained through the minimization of the 

potential energy. In this weighted residual formulation, the continuity of the secondary 
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variables is satisfied in a weighted residual sense and the Lagrange multipliers, Ai and 

are represented by weight functions in the form of the secondary and primary variables, 

respectively. 

, 

The form of the equations for the finite element and finite difference applications 

differs by the form of the element shape functions and the approximation selected for the 

weight functions, @. For the generalized element expansion of subdomain i, the 

independent approximations for the element generalized primary variables, (i. e., 

displacements or velocities), interface secondary variables (i.e., tractions or fluxes), the 

weight functions associated with the secondary and primary variables, and the interface 

variables, are, respectively 

h 

ui =Niuei  ; q .  1 =Ra. 1 1  3 . h .  1 = R i  ; h = T  and v = T u ~  

where a is a vector of unknown coefficients associated with the secondary variables, q , 

and N, R, and T are matrices of interpolation functions for the element primary and 

secondary variables, and primary variables along the interface, respectively. The 

interpolation functions in the matrix R are assumed to be constants for linear elements 

and linear functions for quadratic elements. The interpolation functions in the matrix T 

are cubic spline functions. The derivation of this interpolation matrix is given in 

Appendix B, and the derivation of the geometry representation, rl, is given in Appendix 

C. Substituting these approximations into Eq. (2.45) yields an integral equation in terms 

of the weight function, @, which is given by 
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where, for i=1,2 

and 

where integration over the common subdomain boundary, rl, is considered only for 

element edges along that boundary. 
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Note that all of the element submatrices in the three-approximation formulation 

except for the kIi matrix are identical to those obtained in the two-approximation 

formulation. The submatrix, kIi , does not exist in the two-approximation formulation 

but is included in the three-field formulation. This submatrix is associated with the 

coupling of the primary variables along the subdomain interface boundaries to those 

along the interface. 

Assembling the element equations over the entire domain, enforcing continuity of 

the primary and secondary variables only within each subdomain and assembling the 

contributions along the element edges on the common subdomain boundary, and noting 

that uel and ue2 , and fel and fe2 , andal and a2 are completely uncoupled, yields the 

system of equations given by 

or in a symbolic manner 

K 0 K s  
0 0 K I  

Kp KI O 

[q a = (i) 

(2.46) 

where K, u, and f are the assembled stiffness matrix, displacement vector and force 

vector for the entire structure, and Kp, K,, KI, UI, and a are the assembled Kpi, Ksi, KI~ ,  

UI, and ai for all interfaces. 
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While it is convenient to represent the weighted residual form over the domain 

using a single equation, the system of equations, Eq. (2.46) is obtained from the 

individual weighted residual expressions over each of the subdomains and the constraint 

integrals. The first two matrix equations of the system of equations, Eq. (2.46) are 

derived from the weighted residual statement for subdomain i. That is, 

The third matrix equation of the system results from the reciprocity statement of the 

secondary variables. That is, 

jA(i1 + i 2 ) d r  I = O  on r1 
r1 

The fourth and fifth matrix equations result from the continuity requirement for the 

primary variables, which is given by 

For the finite element development, the weight functions are taken to be the finite 

element shape functions (Le., mi = Ni ). For the finite difference development, the 

weight functions are taken to be the Dirac delta function (Le., 

Qi = 6 i ( x - x i , y - y i ) = 6 i ( x i , y i ) ) .  Thus, for i=1,2, the finite element and finite 

difference stiffness matrices and force vector, kei , kPi  , kSi , andfei , for the three- 

approximation formulation are identical to those obtained for the two-approximation 

formulation for the respective discretization approaches. 
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Note that, for both of the discretization methods, the form of the coupling element 

matrices that are not in terms of the weight functions are independent of the method of 

discretization. That is, 

T Ie kpi = -  I R i  Ni dl- , 
rIe 

and 

kI. = ITTRidl -  Ie 

rIe 

are of the same form for the finite element and finite difference discretizations. 

However, since the element shape functions, Ni, differ for the two methods, the interface 

matrices, kpi , in general, are not identical. Moreover, in the finite element development, 

the weight functions, , are taken to be the finite element shape functions, N,;  thus, at 

the element level ksi  = k T  , and at the global system level Ks i  = K T  . 
P i  P i  

The three-approximation derivation is more general as it allows for the coupling 

of the primary variables to an independent approximation. This attribute is particularly 

important in the heterogeneous discretization approach described in the next section. 

2.5.4. Multiple-Domain Modeling - Heterogeneous Discretization 

Heterogeneous discretization approaches make use of different discretization 

methods for at least two of the subdomains in which the domain is subdivided. There are 

many combinations of spatial modeling approaches; however, this work will focus on the 

coupling of the finite element and finite difference methods. 

Both the two- or three-approximation multifunctional formulations, discussed for 

the homogeneous discretization approach, are applicable to heterogeneous discretization. 
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However, as noted earlier, the three-approximation approach provides additional 

flexibility for the interface definition. Thus, only the three-approximation approach is 

presented. Hence, the multifunctional weighted residual formulation of Eq. (2.46) is 

used. Considering the two domains, upon which this discussion is based, one subdomain 

is discretized using the finite element method, and the other subdomain is discretized 

using the finite difference method. As before, for the finite element development, the 

weight functions are taken to be the finite element shape functions (ie. ,  mi = Ni) ,  and for 

the finite difference development, the weight functions are taken to be the Dirac delta 

function ( ie . ,  Qi = 6 i ( x - x i , y - y ~ ) = 6 i ( x i , y i ) ) .  As expected, the set of element 

matrices becomes a hybrid of the matrices from the finite element method and the finite 

difference method. For completeness, these matrices are repeated here considering 

subdomain 1 as the finite element subdomain and subdomain 2 as the finite difference 

subdomain, and 

k,, = -  jN:R1 drIe  and kS2 =-R2(xi,yi)  , (2.47) 

rIe 

and 
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and 

2.6. COMPUTATIONAL IMPLICATIONS 

The two- and three-approximation multifunctional modeling approaches have 

been generalized such that they are applicable to both homogeneous and heterogeneous 

discretization approaches. Computational implications are presented in this section for 

the generalized system of equations, Eqs. (2.42) and (2.46). Implications specific to a 

discretization approach are highlighted, where appropriate. 

The assembled stiffness matrix K is a block diagonal matrix containing the 

stiffness matrices Ki of each of the subdomains along its block diagonal. The interface 

“stiffness” matrix thus contains coupling terms that augment the stiffness matrices of the 

subdomains along the interface. The two- and three-approximation approaches yield 

systems of equations (see Eqs. (2.42) and (2.46)) of similar form and with the same 

attributes. Due to the use of Lagrange multipliers in the constraint conditions, the 

systems are neither banded nor positive definite. Therefore, standard Cholesky solvers 

can not be used, unless full pivoting is performed to obtain the solution. In addition, due 

to the generalization for the finite difference approximations, the system of equations is 

not necessarily symmetric due to different off-diagonal submatrices, Kp and K,. The 

system unknowns in Eq. (2.46) consist of both primary and secondary variables given by 
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the potential function, u, and the secondary variable coefficients, a, respectively. 

Generally, the coupling matrices, Ksi , are of the order of the length of the interdomain 

boundary, which results in a marked difference in the magnitude of the off-diagonal 

terms of the system matrix compared to its diagonal terms. This characteristic produces 

an ill-conditioned matrix whose solution can cause difficulties for some general-purpose 

solvers. Hence, the coupling matrix should be scaled such that it is of the same order as 

the subdomain stiffness. The upper diagonal submatrix blocks contain uncoupled 

subdomain stiffness matrices. The symmetry of the subdomain matrix is determined by 

the choice of the weight function, @. For the finite element discretization, the subdomain 

matrices are symmetric. However, due to the elimination of fictitious nodes for the 

imposition of boundary conditions and loads in the finite difference discretization, the 

subdomain stiffness matrices, Ki, generally are not symmetric, but they are positive 

definite and sparse. The coupling is accomplished through the introduction of the 

coupling terms in the matrices, KPi and Ksi , for both approaches. The three- 

approximation approach requires an additional matrix, KI . For the three-approximation 

approach, the number of additional degrees of freedom associated with the interface is 

generally small in comparison with the total number of degrees of freedom in the 

subdomains. Thus, modeling flexibility is provided at a relatively small computational 

expense. The computational expense in this study may be reduced additionally as the 

efficiency of new solution algorithms for the system of equations in Eqs. (2.42) and 

(2.46) is increased. 

The load transfer mechanism for finite element multiple-domain discretizations 

presented by Aminpour et al.25 is generalized for the multifunctional approach, herein. 
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This load transfer mechanism may be interrogated for the two- and three-approximation 

formulations by considering the first and second rows of Eqs. (2.42) and (2.46), 

respectively. For the three-approximation approach, the matrix equations of interest are 

given by 

Klul +K, , a l  =f1 

K 2 ~ 2  + K,, a2 = f2 

These equations can be partitioned such that they correspond only to the primary 

variables, Ui on the interdomain boundaries. That is, Ui represents a subset of ui ; 

hence, 

(2.48) 

where Ki  denotes interdomain boundary stiffness terms related to Ui , and there are no 

forces on the interdomain boundary. The expressions given by the product term, Ki i i  ~ 

represent the internal fluxes at the th interdomain boundary, and thus Eq. (2.48) may be 

written as 

- - 
fl  = -Ksl a1 and f2 = -Ks2a2.  (2.49) 

For homogeneous discretization using the finite element method, substituting for 

Ksi from Eq. (2.43) into Eq. (2.49) gives 

(2.50) 
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Examining Eq. (2.50) indicates that the evaluation of the internal fluxes is consistent with 

the evaluation of equivalent nodal fluxes in the presence of applied fluxes on the 

boundary. In addition, Eq. (2.50) substantiates that the secondary variables along the 

interface are represented by distributed fluxes for each of the subdomains. 

For homogeneous discretization using the finite difference method, substituting 

for KSi from Eq. (2.44) into Eq. (2.49) gives 

(2.5 1) 
- 
fi = -Rial = -61 

- 
f 2  = -R2a2 = -62 

Examining Eq. (2.5 1) indicates that the evaluation of the internal fluxes is consistent with 

nodal fluxes evaluated at points in the presence of applied fluxes on the boundary. In 

addition, Eq. (2.50) substantiates that the secondary variables along the interface for this 

approach are represented by nodal fluxes for each of the subdomains. 

For heterogeneous discretization using the combined finite element and finite 

difference methods, substituting for KSi from Eq. (2.47) into Eq. (2.49) gives 

(2.52) 

- 
f 2  = - R 2 ~ 2  = -42 

Examining Eq. (2.52) indicates for subdomain 1 (the finite element subdomain), that the 

evaluation of the internal fluxes is consistent with the evaluation of equivalent nodal 

fluxes in the presence of applied fluxes on the boundary. Meanwhile, for subdomain 2 

(the finite difference subdomain), the evaluation of the internal fluxes is consistent with 

nodal fluxes evaluated at points. This reveals that for this multiple-domain approach, the 

secondary variables along the interface for subdomain 1 are represented by distributed 
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fluxes, while for subdomain 2 the secondary variables along the interface are represented 

by nodal fluxes. Thus, for this heterogeneous modeling approach, it is required to 

transform the interface secondary variables into equivalent quantities. 

2.7. VERIFICATION TEST CASE 

In this section, the multifunctional methodology for the scalar-field problem is 

demonstrated on a verification test case. The application is described, and the associated 

results and salient features are discussed. This application is considered a patch test for 

the formulation and verifies the applicability of the method for a configuration for which 

the solutions are known. Finite difference and finite element solutions for single- and 

multiple-domain configurations are presented to provide benchmark solutions for the 

multifunctional approach using homogeneous and heterogeneous discretization. 

Representative applications from the field of engineering science are presented in 

Chapter IV. 

2.7.1. Patch Test Problems 

The patch test has proven to be a useful discriminator of the convergence 

properties of finite elements and other discretization approaches. A patch test refers to 

any problem with an exact solution as a constant state for which the approximating 

primary variable is capable of reproducing. The fundamental concept of the patch test for 

the scalar-field problem herein is to subject a domain to boundary conditions that 

engender a linear or quadratic primary variable field and a constant or linear secondary 

variable field throughout the domain. For the governing differential equation of the form 

of Eq. (2. l),  boundary conditions that serve this purpose are: 

i. Specified primary variable on r p  which emanate from a linear field as 
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u =a1x+a2y+ao 

or quadratic field as 

u = a l p  - y2)+a2x  

where a,, a2, a,,and a, are arbitrary constants. 

ii. Constant or linear secondary variable on r’ 

4 = blx + b2y + bo 

Given these boundary conditions, a solution is sought to the Laplace’s equation. This 

governing equation is applicable to a variety of problems in engineering science. For 

example, consider the solution for the primary variable, u(x,y), in a rectangular domain 

(see Figure 2.7) with boundary conditions of the forms indicated which yield the exact 

solution. 

’T 

Figure 2.7. Two-Dimensional Rectangular Domain. 

The problem is given by 

= 0, a2u a2u  
ax2 ay2 
-+- 
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which is known as Laplace’s equation for a planar domain. 

Results of the analyses performed have been compared to appropriate reference 

solutions and are summarized in Table 2.2 using normalized values. A value of unity 

implies perfect agreement with the reference solution. Specified boundary conditions 

representing linear, bilinear, and quadratic potential functions are applied to the square 

domain. For all cases, the reference solution is the exact solution. For the linear case, a 

specified boundary condition of the form 

u(0,y) = 2, u(a, y )  = a + 2, and qn (x,O) = qn (x,b) = 0 

has been imposed. For the bilinear case, a specified boundary condition of the form 

u(0,y) = y ,  u(a,y) = a + y ,  and qn (x,O) = - 1 and, qn (x,b) = 1 

has been imposed. For the quadratic case, a specified boundary condition of the form 

2 2 2  u(0,y) = -y , and u(a,y) = a - y , qn(x,O) = 0, and q,(x,b) = -2b 

has been imposed. Several analyses have been performed namely, (1) two single-domain 

analyses with individual finite element and finite difference discretizations, respectively, 

(2) two multiple-domain analyses with homogeneous modeling with individual finite 

element and finite difference discretizations, respectively, and (3) one multiple-domain 

analysis with heterogeneous modeling with combined finite element and finite difference 

discretizations. Results from these analyses are summarized in Table 2.2. In this work, a 

five-node central difference template and four-node quadrilateral finite elements are used 

to form the models. Spatial modeling is used consistent with single-domain modeling 

approaches with a ( 5  x 5 )  mesh and a (9 x 9) mesh. The coarse and fine models, shown 

in Figure 2.8, are used in the finite element homogeneous modeling. For the finite 

difference homogeneous modeling and the heterogeneous modeling, a finite difference 
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mesh is used that has the same number of mesh points as the finite element mesh in the 

respective domain. 

Figure 2.8. Spatial Discretization for Two-Dimensional Rectangular Domain. 

For boundary conditions consistent with linear and bilinear potential functions, 

the computed potential and flux results are exact for all analysis types. For boundary 

conditions consistent with a quadratic potential function, the error in the computed 

potential and flux is approximately 3% for the multiple-domain homogeneous finite 

element (MDFE) spatial modeling, and the error is approximately 1% for the multiple- 

domain heterogeneous modeling (MD/HM) with finite difference and finite element 

discretization. For the given boundary conditions and element configuration (2. e., square 

or rectangular elements), the single-domain finite element (SD/FE) model reproduces the 

exact solution using the bilinear finite element. However, for a general element 

orientation (2. e., quadrilateral elements), the bilinear element used does not reproduce the 

exact solution. Moreover, for the multiple-domain analysis, error is introduced when 

combining finite element models of different discretization along the boundary. This 

error is due to the use of a higher-order interpolation function ( ie . ,  cubic spline) on the 

interface than that used to represent the potential on the finite element edges. The error 
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obtained using the heterogeneous model is smaller than that obtained for the 

homogeneous finite element model. This attribute is due to the ability of the finite 

difference model to represent accurately the potential function on the interface based on 

the higher-order shape function used in the generalization of the finite difference method. 

Table 2.2. Results of the Multifunctional Approach for the Patch Test Problems. 

SD/FD: 
MD/FE: 
MD/FD: 
MD/HM: 

Single-Domain with Finite Difference discretization 
Multiple-Domain with Finite Element discretization 
Multiple-Domain with Finite Difference discretization 
Multiple-Domain with Heterogeneous Modeling (combined finite 
difference and finite element discretizations) 
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CHAPTER I11 

MULTIFUNCTIONAL APPROACH FOR VECTOR-FIELD 

PROBLEMS 

3.1. GENERAL 

While a scalar-field problem is one in which the dependent variable is a scalar and 

requires only the specification of magnitude for a complete description, a vector-field 

problem is one in which the dependent variable is a vector of components and requires 

the specification of magnitude and direction. Many of the concepts outlined for the 

scalar-field problem in the previous chapter are readily extendable to the vector-field 

problem, which allows further generalization of the multifunctional approach developed 

herein. A representative example of the vector-field differential equation in two 

dimensions is considered, and the mathematical statement is formulated. The concepts 

developed here are directly applicable to one-, two-, and three-dimensional vector-field 

problems; however, only the two-dimensional development is included in the interest of 

brevity. The general form of the differential equation describing the vector-field problem 

governing the motion of a continuum is given by the equilibrium equation 

(3.1) pb + V . T  =- d ( P )  
dt 

where the variables p, b, T and v are the material mass density, the body force per unit 

volume, the stress tensor and the velocity vector, respectively. Eq. (3.1) is subject to the 

natural boundary condition, t = T . n = t on r", and essential boundary conditions, 

u = U , on rp where the normal vector to the boundary r is given by n = n,i + n y j  , and 
h h 
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nx and ny are direction cosines of the unit normals, and 

applied tractions, and prescribed displacements, respectively, a n d i  is the initial velocity 

vector. The equilibrium equations must be satisfied within the domain. Note that instead 

of prescribing the tractions on the boundary, boundary conditions may be given in terms 

of displacement or velocity components. Furthermore, boundary conditions on r may be 

mixed (ie. ,  surface forces, t, may be prescribed on one part of the boundary and 

displacements or velocities may be prescribed on another). The equilibrium equation and 

other governing equations of continuum mechanics are discussed in more detail in the 

following section. 

3.2. CONTINUUM MECHANICS FOUNDATIONS 

. In addition, t , and U are 

The conservation of mass, linear momentum, angular momentum, energy, and 

entropy give rise to field equations that govern the deformation and motion of a 

continuum, and these equations are given in the form of integral or differential equations. 

In deriving the governing equations, the starting point is a statement of the conservation 

principle applied to a “control volume” to develop the integral form of the equation and 

extract the differential form by using the divergence theorem. 

3.2.1. Principle of Conservation of Mass 

The principle of conservation of mass states that when the total mass of the body 

is unchanged for an arbitrarily small neighborhood of each material point, the mass is 

considered to be conserved locally. Hence, the rate of increase of the mass inside the 

control volume is equal to the net inflow of mass through the control surface. 

Mathematically, this principle is given by 
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j( $ + V . (pv))dV = 0 
v 

Since the integral is equal to zero for arbitrary respective volumes, V, the integrand must 

be equal to identically zero everywhere in the domain. The resulting equation, known as 

the continuity equation, is well known in fluid dynamics and is given in a conservative 

form by 

The differential equation takes on a slightly different form when the derivatives of 

products are expanded and the definition of the material derivative is considered. The 

resulting non-conservative form is given by 

dP dp  av .  
- + p V . v = O  or - + p L = O  
dt dt axi 

If the material is incompressible so that the density in the neighborhood of each material 

particle remains constant as it moves, the continuity equation takes the simpler form 

avi 
axi V . v = O  or - = 0  (3.3) 

This is known as the condition of incompressibility, which is important in classical 

hydrodynamics and plasticity theories. The continuity equation is an important partial 

differential equation in all branches of continuum mechanics and the discipline-specific 

aspects are discussed in the next section. 

3.2.2. Conservation of Linear Momentum 

The equations of motion, valid in all branches of mechanics, are partial 

differential equations derived from the momentum principles of a collection of particles. 
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In this case, it is easier to use integrals over a given mass of material (the material 

volume, V’) rather than over a given spatial volume (the control volume, v). The 

Reynolds transport theorem is used to replace the material volume with the control 

volume. The conservative form of this theorem is given by 

where $ is the continuum property per unit mass and f pv . n dS is recognized as the mass 
S 

flux. The conservation of linear momentum represents Newton’s second law and governs 

the motion of the continuum under the influence of the external effects. This principle 

states that the time rate of change of momentum is equal to the resultant force, F, acting 

dL 
dt 

on the body. Thus, F = - where F is the resultant of all external forces and is given 

acting on a material volume as F = jpb dV’ + f t  dS’ , and L is the linear momentum 
v’ S‘ 

vector on a material volume given by L = vp dV’ . First, expressing the conservation 
V’ 

of linear momentum over the material volume and then using the Reynolds transport 

theorem to express the equation in terms of the control volume yields the integral 

conservative momentum equation given by 

a pb d V + f t dS = - vp d V + f vpv . n dS 
v S at ,  S 

Using the divergence theorem and Cauchy’s formula, the conservative differential form 

may be obtained as 

p b + V . T = - + V . ( p v v )  a(pv) 
at 
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The non-conservative form of the differential equations is obtained by expanding the 

divergence operator, V . ( p v ) ,  and making use of the continuity equation, Eq. (3.3), 

yielding 

3.2.3. Conservation of Angular Momentum 

The principle of conservation of angular momentum is used to show symmetry of 

the stress tensor, which is used to describe the state of stress of the continuum. In a 

collection of particles whose interactions are equal, opposite and collinear forces, the 

time rate of change of the total moment of momentum for the given collection of particles 

is equal to the vector sum of the moments of the external forces acting on the system. In 

the absence of distributed couples, the same principle for a continuum is postulated. 

Thus, 

j(rxt)dS+ j ( rxpb)dV=- j ( rxpv)dV d 

S v dt v 

where x denotes the vector cross-product operation. Upon expressing the cross products 

in indicia1 notation, transforming the surface integral to a volume integral (using the 

divergence theorem), and using the expression for the material derivative of a volume 

integral, the moment of momentum equation is reduced to 

at each point where ekrs is the permutation operator. This yields 

For r=l T32 - T23 = 0 
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For r=3 T12 - T21 = 0 

establishing the symmetry of the stress tensor in general without any assumption of 

equilibrium or of uniformity of the stress distribution. However, the balance of the 

couple stresses is assumed. In reference 39, a proof is given for symmetry of the stress 

tensor involving the condition that the rates of change of the components of stress remain 

finite. 

3.2.4. Conservation of Energy 

The principle of conservation of energy states that energy is conserved if the time 

rate of change of the kinetic and internal energy is equal to the sum of the rate of work of 

the external forces and all the other energies that enter or leave the body per unit time. 

Such energies supplied may include thermal energy, chemical energy, or electromagnetic 

energy. Herein, only mechanical and thermal energies are considered, and the energy 

principle takes the form of the well-known first law of thermodynamics. Since the 

energy equation involves an additional unknown quantity, the internal energy, the 

equation is a useful addition to the equations of continuum mechanics only when it is 

possible to relate the internal energy to the other state variables; in traditional 

thermodynamics an equation of state furnishes the required relation. The first law of 

thermodynamics applied to a material volume may be written as 

K + U = W + Q  

where the superscripted dot, ('), represents the derivative with respect to time, a n d k  is 

the rate of increase of the kinetic energy of the material volume , U is the rate of increase 

of the internal energy of the material volume, W is the rate of work done by the external 
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forces on the material volume, and Q is the rate of heat added to the material volume. 

The individual variables are defined as follows: 

. d l  K =- I -pv-vdV’ 
dt v’ 2 

W = j pb .vdV’+  jTv-ndS’ 
v’ S‘ 

Q = - q . n dS ’ + pr d V’ 
S‘ V’ 

where C is the specific internal energy, q is the heat flux vector and r is the radiative heat 

transfer per unit mass. Upon using Reynolds transport theorem to convert the material 

volume to the control volume and the divergence theorem to convert the surface integrals 

to volume integrals, and performing further algebraic manipulation, the energy takes the 

form 

dû  
p - dV = - j V .  q dV + pr dV + IT :D dV 

v v v dt v 

where the stress power, T:D , is the scalar product of the stress tensor, T, and the rate of 

deformation tensor, D. The differential forms are given by 

dC 
p- = -V . q + pr + T:D 

dt 

or 
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If only mechanical quantities are considered, the principle of conservation of 

energy for the continuum may be derived directly from the equation of motion. This 

equation, referred to as the conservation of mechanical energy, states that the rate of 

increase of the internal energy equals the heat added per unit time plus the stress power 

that is not contributing to the kinetic energy. The equation is given by 

dG 
p- = -V . q  + pr + T:D 

dt (3.4) 

3.2.5. Second Law of Thermodynamics 

The second law of thermodynamics is automatically satisfied and includes the 

change in entropy of the continuum. The entropy is regarded as a measure of change of 

energy dissipation with respect to temperature. The relationship expressing conversion of 

heat and work into kinetic and internal energies during a thermodynamic process is set 

forth in the energy equation. The first law, however, leaves unanswered the question of 

the extent to which the conversion process is reversible or irreversible. The basic 

criterion for irreversibility is given by the second law of thermodynamics through the 

statement on the limitations of entropy production. For a general process, the energy 

equation and the second law of thermodynamics are combined yielding 

- 

where dŝ  is the change in the entropy per unit mass, T is the absolute temperature, 9 is 
dt 

the heat transferred per unit time per unit mass, Q is the dissipative function obtained 

from Q = qy Dij using the dissipative or deviatoric stress tensor TD, and the notation d D 

is used to indicate that the quantity is not an exact differential. The deviatoric stress 
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D tensor is defined by Ty = Ty - pJV where - p is the hydrostatic pressure. For a general 

process, Q 2 0 

dŝ  1 aq 
- 2 -- 
dt T dt 

and for an adiabatic process, 

dŝ  - 2 0  
dt 

where in each of the above equations, the equality condition holds for a reversible 

process and the inequality condition holds for an irreversible process. 

The general principles of continuum mechanics have been outlined in this section 

to provide a foundation for the basic equations governing the motion of general continua. 

In the derivation of the balance laws, no differentiation has been made between various 

types of substances. The character of the material is brought into the formulation through 

appropriate constitutive equations for each material with the constitutive variables being 

restricted in their regions of definitions. These and other discipline-specific attributes are 

outlined in the following section. 

3.3. DISCIPLINE SPECIFICS 

The constitutive equations characterize the individual material and its reactions to 

applied loads. Hence, in the following section, the discipline-specific attributes of solid 

and fluid continua and their impact on the general principles of continuum mechanics are 

reviewed. In addition, other salient characteristics of the governing equations for solids 

and fluids are discussed. 

All constitutive equations must be consistent with the general principles of 

continuum mechanics. While impact of the constitution of the continua is discussed for 
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all of the balance laws, emphasis is placed on the principle of conservation of linear 

momentum. This principle is the basis for the governing equations of the multifunctional 

approach presented herein. This law states that the sum of the body forces together with 

the sum of the contact forces is equal to the change of the linear momentum of the 

material. The law is used as the basis for describing the motion in both solid mechanics 

and fluid mechanics. 

3.3.1. Solid Mechanics 

The field of solid mechanics has traditionally been characterized by well- 

formulated analysis of mechanical phenomena occurring in engineering systems, 

combined with experiments that explore the basic concepts4'. Herein, elasticity theory is 

the primary field of solid mechanics discussed. In classical linear elasticity theory, it is 

assumed that displacements and displacement gradients are sufficiently small such that 

no distinction need be made between the Lagrangian and Eulerian descriptions. It is 

further assumed that the deformation processes are adiabatic (no heat loss or gain) and 

isothermal (constant temperature). The conservation of mass states that the mass of a 

deformed piece of material is the same as the mass of the undeformed material. In 

elasticity, based on the small strain assumption, the density, p, in the deformed state may 

be approximated by the density, po, in the undeformed state, and the conservation of mass 

is identically satisfied. 

Moreover, it is convenient to identify a material particle of the continuous body 

by giving its initial coordinates. The position coordinates, x, y,  z appearing in the partial 

derivatives and the integrals in the foregoing derivatives are, however, the instantaneous 

positions. For an elastic body in equilibrium, they represent the coordinates of a particle 
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in its new position in the deformed body. When the strains and displacements are small, 

it may be possible that the equilibrium conditions are satisfied in the undeformed 

configuration of the body. The equilibrium differential equations are strictly applicable 

and the stress tensor is strictly symmetric for the nonpolar case only when defined in the 

instantaneous deformed position. Even in small strain theory of elasticity, it is necessary 

to take account of this attribute in applications where the instability may occur, as in the 

buckling of a column or a shell. Asymmetry of the stress tensor also occurs when there is 

distributed couple stress6. 

In ideal elasticity, heat transfer is considered insignificant, and all of the input 

work is assumed to be converted into internal energy in the form of recoverable stored 

elastic strain energy, which can be recovered as work when the body is unloaded. In 

general, however, the major part of the input work into a deforming material is not 

recoverable energy stored, but dissipated by the deformation process, causing an increase 

in the body’s temperature and eventually being conducted away as heat. When thermal 

effects are neglected, the energy balance equation may be written as 

The internal energy, u^ , in this case is purely mechanical and is called the strain energy 

density (per unit mass) 

A material body is said to be ideally elastic when the body recovers (under 

isothermal conditions) its original form completely upon removal of the forces causing 

deformation, and there is a one-to-one relationship between the state of stress and state of 
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strain. The generalized Hooke’s law relates the nine components of stress to the nine 

components of strain 

0.. = c . .  & y ykl kl 

Symmetry of stress and strain reduces the number of material constants in the fourth- 

order tensor, c i j k l ,  from 81 to 36. The existence of the strain energy density functional 

further reduces the number of constants to 21. The existence of three mutually 

orthogonal planes of symmetry reduces the number of constants to nine. Isotropy reduces 

the number of constants to two. 

For this special case, Hooke’s law reduces to 

Oij = b i j 8 k l  +P(6,k8jl  + 8i18jk ) kk l  (3.5) 

where 

VE 
; i z =  E p=G=-  

2(1+ v)  (1 + v)(1 - 2v) 

For i=j=l, the second and third terms of Eq. (3.5) are nonzero if k=l and Z=1. Thus, 

where e = ~ 1 1  + ~ 2 2  + ~ 3 3 .  For i= l  andj=2, the second term of Eq. (3.5) is nonzero if 

k=l and Z=2 and the third term is nonzero if k=2 and Z=1. Thus. 

012 = P 1 2  + P 2 1  = 2 P 1 2 .  

Similarly, other components of stress may be defined. 

Noting that the linear strain-displacement relationship is given by 
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One method of solution of the problems of elasticity is to eliminate the stress components 

in the equilibrium equations given in indicia1 notation as 

0.. ' + p(bi -Gi) = 0 ,  Y > J  

and using Hooke's law to express the strain components in terms of the displacements. 

Eq. (3.5) may be written, with no loss of generality, as 

0.. Y = .2&&j + 2pUEij 

Solving the boundary-value problem involving 15 equations for 15 unknowns is a 

formidable task. There are several ways of formulating the problem in terms of fewer 

unknowns and fewer equations. The most straightforward method is to obtain the 

stresses in terms of displacement gradients, and then substitute into the equilibrium 

equations to obtain three second-order partial differential equations for the three 

displacement components. Therefore, in terms of displacements, 

0ij = h l , l 4 j  + &i,j + uj,i 

and 

Substituting these expressions into the equilibrium equation yields 

h l , & j  + p(Lli, j j  + uj, i j  )+ p(bi - iii ) = 0 

or 

h l , l i  + p(ui, j j  + u J > Y  ' " )+ p(bi - iii) = 0 

h. .. +p(.. .. +u. .. + p  b. -u. = o  J ,JZ  1,JJ J ,Y  ) ( z  "J 
Noting that 1 is a dummy index in the term ul ,~ .  The equation may be written as 
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This leads to the field equations of Navier 

(n+&. J,JZ .. + p i , j j  +p(bi - i i i )=o  

pv2ui  + (n + p)u j ,  j i  + p ( b i  - i i i )  = 0 

or 

(3.6) 

The conditions for the static equilibrium of an elastic body are described by an elliptic 

system of nine partial differential equations for the displacements and stresses. 

3.3.2. Fluid Mechanics 

Fluids whose constitution is LGscribed by linear constitutive relations are called 

Newtonian fluids. The subject of Newtonian fluids is generally referred to as fluid 

mechanics, which encompasses widely diverse topics including, but not limited to, 

motion of airplanes and missiles through the atmosphere, the flow of liquids and gases 

through ducts, and the transfer of heat and mass by fluid motion. The constitutive 

equations for these fluids are given by 

0.. Y = -P8ij + CijklDkl 

where P is the thermodynamic pressure and Dkl are the components of the rate of 

deformation tensor 

For isotropic fluids, the last term in the constitutive equations may be written as 

cijklDkl = mrraij + 2@ij 

or 

Therefore, 
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and by evaluating the Kronecka delta parameters, 

0.. Y = -P8ij + 'ZDkk8ij + 2@ij (3.7) 

This is the Navier-Poisson law for a Newtonian fluid. 

As in linear elasticity, substituting the constitutive equation into the equation of 

expanding gives 

-Ci + ( R + , ~ ) v i , ~ ~  +pvi,jj +p(bi - G i ) = O  

or in vector form 

dV 
dt 

p- = -VP + (1 + p)v(v. v)  + pv2 v + pb 

2 
3 

Using the Stokes condition, 1 = --p , the equations reduce to the Navier-Stokes 

equations and are given by 

or 

(3.9) 
dV 
dt 3 

p- = -VP + kV(V. v )+  pV2v + pb 

In this form, the difference between the Navier equations of solid mechanics, Eq. (3.6) 

and the Navier-Stokes equations of fluid mechanics, Eq. (3.8) or (3.9), can be readily 
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considered. In Navier-Stokes equations, there is not only an additional pressure term but 

also the equations are nonlinear; this can be seen by examining the acceleration, 

dv. av .  
' dt at 

v. =1=1 + v ~ , ~ v ~ ,  and from the products of the density, p, and the acceleration, v , 

present in the equation. Additional nonlinearities are evident in the continuity equation 

given by vk,k=o (v.v=O). In the linear theory of elasticity, this situation does not occur 

a 2u 

at2 
since vi = - and p is taken as a constant. The Navier-Stokes equations together with 

the continuity equation form a complete set of four equations and four unknowns: the 

pressure, P, and the three velocity components, vi. 

For steady and low-speed flow of an incompressible fluid (V.v=Dkk=O), for 

constant p and by making use of the divergence-free condition in Eq. (3.8) or (3.9), the 

governing equations take the form 

Dkk = o  

However, these equations, often referred to as Stokes equations, may be written for two- 

dimensions in the most general form without using the divergence-free condition to 

simplify the equations. In so doing, the physical form of the natural boundary conditions 

is preserved. The form of these equations is given by 

avl av2 y + - = o  (3.10) 
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- P -  [ ax, a [ - ax2 + 2 ] + 2 2 ] + x = p b 2  3x2 

Fluids often behave as though they are inviscid or frictionless. Therefore, it is 

useful to investigate the dynamics of an ideal fluid that is incompressible and has zero 

viscosity. For frictionless flow of an incompressible fluid, the equations, called Euler's 

equations, may be obtained from the general Navier-Stokes equations. Since in a 

frictionless flow, there can be no shear stress present and the normal stress is the negative 

of the thermodynamic pressure, the equations of motion are 

/$i = -<i + pbi 

or 

av 
at 

p- = -VP + pb 

For a general fluid, the character (e.g., elliptic, hyperbolic, or parabolic) of these 

equations of motion is determined by the sign of the discriminant. The Navier-Stokes 

system of equations, in general, is considered as mixed elliptic, parabolic and hyperbolic 

equations. The system of time-dependent Navier-Stokes equations is essentially 

parabolic in time and space, although the continuity equation has a hyperbolic structure. 

Therefore, they are considered a parabolic hyperbolic system. For the same reason, the 

steady-state form of the Navier-Stokes equations leads to elliptic-hyperbolic properties. 

In addition, the classification of the differential equation changes with the flow 
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characteristics (i.e., subsonic, supersonic, or transonic), which may create great 

difficulties in solution where part of the flow is supersonic and part of it is subsonic. 

3.4. SINGLE-DOMAIN FORMULATION 

As in the scalar-field problem, methodology for the vector-field problem is 

presented formulating the general method of weighted residuals for a single domain. 

Consider the equilibrium equation governing the motion, u, of a continuum 

or in indicia1 notation 

+ p(bi -Gi) = 0 in C2 for i ,  j = 1,2,3 (3.11) 

in a domain, C2, bounded by I?. In this work, the equilibrium equations of Eq. (3.1 1) 

describe the motion of a three-dimensional continuum. Hence, the indices, i and j range 

from the value of unity to three (i.e., i,j = 1,2,3). This range will apply throughout this 

development unless otherwise specified. In general, the boundary, r, can have mixed 

boundary conditions with the primary variables, u, prescribed on ? and the secondary 

variable, the traction, t, prescribed on the remaining part of the boundary, r . In solid 

mechanics, the six stress components will be some general functions of the components 

of the generalized displacement 

S 

U T  =[u v w e, e, ez]  

where u, v, and w are translational components and S,, S, and S, are rotational 

components. In fluid mechanics, the stress components will be functions of the velocity 

vector 
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which has similar components to those of the displacement vector. Thus, Eq. (3.11) can 

be considered as a general equation of the form of A(") = 0 .  

The method of weighted residuals is applied to the vector-field problem in this 

chapter in the same way as for the scalar-field problem of Chapter 11. Hence, an 

approximate solution, G , is used in expressing oqj through the use of stress-strain and 

strain-displacement (or stress-rate of strain) relations, then the differential equation, Eq. 

(3.1 l), will no longer be satisfied, and this lack of equality is a measure of the departure 

of G from the exact solution. The lack of equality is called the residual, R, and is written 

as 

Ri = oij, + p(bi - G i )  # 0 for i,j = 1,2,3 . 

The residual is orthogonalized by a set of weight functions, Q and may be written as 

n 

m = l  
where the approximate solution is given by G = Yo + CamYm . As defined before, the 

functions, Ym, are trial functions, and am are arbitrary coefficients. The trial functions 

satisfy the homogeneous part of the essential boundary conditions, while Yo satisfies the 

nonhomogeneous part. Using the general weighted residual form outlined in Chapter 11, 

where the residual in the satisfaction of the boundary conditions is orthogonalized by a 

secondary weight function, q.  For the system at hand, a vector quantity is sought and 

the differential equation is a simultaneous system of equations. Here, 
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A(u) = + p(bi - Gi) = 0 ,  and the essential and natural boundary conditions are 

represented by 

B l ( u ) = u - i i = 0  or u i - z i  = O  on r p  

and 

~ ~ ( u ) = t - t = O  or t i - t i  = O  on rs, 

respectively. Therefore, considering the approximate solution, , we may write the 

general integral form of the differential equation governing the continuum motion as 

Note that the approximate solution may be selected to satisfy the essential and the natural 

boundary conditions and thus the boundary integral equations in Eq. (3.13) are identically 

zero. In this formulation, we will presume that the essential boundary conditions, i.e., 

N 

i i- i i=Oor u i - z i  = O  on r p  

are automatically satisfied by the choice of the function, 

rewritten as 

. Therefore, Eq. (3.13) is 

In the formulation herein, the order of differentiation on the stress term in the 

integral equation, Eq. (3.14), is reduced to obtain the weak formulation. Recognizing that 

the stress components are functions of the primary variable, u, which is approximated by 

u . For simplicity, the subsequent development is presented in terms of u. Application 

of the divergence theorem to Eq. (3.14) yields 

- 
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Note that the domain boundary is presumed to consist of boundaries on which the 

primary variable is specified and boundaries on which the secondary variable is specified, 

and r = r p  + rs. Therefore, the boundary integral on r, may be expressed as 

In the method of weighted residuals, the weight functions, @, satisfy the homogeneous 

boundary conditions for the primary variable, and thus, @=O on ?. Therefore, the 

boundary integral on ? is identically zero and Eq. (3.15) may be rewritten as 

Since the weight functions, @ and 5, are arbitrary, they may be chosen, without loss of 

generality, such that, * = 4, and using the Cauchy formula, ti = o q n j ,  

(3.16) 

or 

The integral form of Eq. (3.16) is given for a general continuum. If the weight functions, 

mi, are selected to be virtual displacements or velocities, then Eq. (3.16) is given by 

The term can be expanded to 
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= 6 ui, . = 6(Ei  +q) 
J )  

where cij and aij are symmetric and skew-symmetric tensors, respectively. These tensors 

are given by 

In solid mechanics, these tensors represent the linear infinitesimal strain-displacement 

and linear infinitesimal rotation tensors, respectively. In fluid mechanics, the tensors 

represent the linear infinitesimal strain-rate of deformation and vorticity tensors, 

respectively. Noting that 0.. is a symmetric tensor and that the product of a symmetric 
II 

tensor and a skew-symmetric tensor is zero, Eq. (3.17) may be rewritten as 

Eq. (3.18) represents the principle of virtual work where the first integral term represents 

the internal virtual work, the second and third terms represents the external virtual work 

due to body forces, inertial forces and surface tractions. 

In the virtual work development, the term virtual work is loosely used for fluid 

mechanics and has been included here to highlight the similarities between solid and fluid 

mechanics. Variational techniques for perfect fluids, non-Newtonian fluids and general 

Navier-Stokes equations are discussed in Finlayson7. In this work, concentration is given 

to the general weighted residual equations, Eq. (3.16), and these equations form the basis 

of finite element approximations, which will be presented briefly in a subsequent section. 

Thus far, the single domain formulation has been developed for the vector-field 

problem focussing on the momentum equation, which is applicable to general continua. 
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However, the motion of a fluid is governed by the conservation laws of mass, momenta, 

and energy. In general, these equations consist of a set of coupled nonlinear, partial 

differential equations in terms of the velocity components, temperature, and pressure. 

When the Reynolds number for the flow is very low, the nonlinear terms due to inertial 

effects can be neglected, resulting in a linear boundary value problem. Such a flow is 

called Stokes (see Eq. (3.10)). When temperature effects are not important, the 

energy equations are uncoupled from the momentum ( 2 .  e., Navier-Stokes) equations. 

Thus, for isothermal flows, only the Navier-Stokes, Eq. (3.8), and continuity, Eq. 

(3.2), need to be solved. Hence, an additional equation expressing the continuity 

condition is included in the weighted residual formulation. In the interest of 

completeness, the formulation herein is described using a Newtonian fluid. The laws 

governing the flow of Newtonian fluids were reviewed in Section 3.3.2 in which the 

equations were specialized to viscous fluids that are subject to the assumption of 

incompressibility. Under these conditions, the weighted residual statement of the 

equation of continuity, Eq. (3.3), is given by 

(3.19) 

where the residual in the continuity condition is orthogonalized by the weight function, 

av 
l , j  ax &,and u. = V . u = -  . Hence, for fluidmechanics, both Eqs. (3.16) and (3.19) are 

the weighted residual statements required to approximate the continuum motion. While 

for solid mechanics, since the continuity condition, Eq. (3.3) and likewise Eq. (3.19) are 

automatically satisfied, Eq. (3.16) is the only weighted residual statement required to 

approximate the continuum motion. 
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3.5. MULTIPLE-DOMAIN FORMULATION 

As in the case of the scalar-field problem of Chapter 11, the domain of the problem 

is subdivided into smaller subdomains. Consider the equilibrium equation governing the 

motion, u, of a continuum 

o ~ , ~  + p(bi -Gi) = 0 in Cl for i, j = 1,2,3 (3.20) 

in the entire domain, Cl, bounded by I?. For simplicity, the multiple-domain formulation 

is presented for only two subdomains, Cl1 and Cl2 (see Figure 2.3) with a single interface 

boundary. Independent approximations and weight functions are assumed in each of the 

subdomains and continuity conditions are used to provide for a continuous solution 

across the domain. Thus, Eq. (3.20) is satisfied in each subdomain, independently, i.e., 

2 0.. (1) . + - Gj l ) )  = 0 in Cl1 and o ~ , ~  (2) + p1 ( b p )  - Gj2) )  = 0 in Cl 
9,J 

subject to the boundary conditions on the subdomain boundaries, r1 and r 2 ,  and the 

superscripted numbers enclosed by parentheses denote the subdomain. In general, the 

boundaries can have mixed boundary conditions with the primary variable, u, prescribed 

on r“ and the secondary variable, the traction, t, prescribed on rs. These boundary 

conditions may be written as 

1 
u1 -iil = O  or u p ) - E / l )  = O  on I‘: and t-t1 = O  or ti’ 1) -f/’) = O  on r’ 

and 

u 2 - U 2 = 0  or u ! ” ) - i $ ” )=O on rl and t - t 2 = 0  or t ! ” ) - f j 2 ) = 0  1 on ri. 
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For the multiple domain case, the boundary at the interface between the two subdomains 

is denoted rl. Hence, the subdomain boundaries, rk, are presumed to include three 

boundary types, and these boundaries are given by 

Here, the boundary on the subdomain common boundary is assumed to represent the 

I 1  same geometry and thus, rk = r . The residual for each domain is orthogonalized by a 

set of weight functions, @Ik) and is written as 

and 

n n 

m=l m=l  
where the approximate solution is given by c 1  = CulmYl lm and c 2  = C ~ 2 m Y 2 m .  The 

functions, Ylm and Y 2m , are the trial functions, and alm and u2m are sets of arbitrary 

coefficients. Using the general form outlined previously, ( 2 .  e., 

j@A(u) di2 + jqB(.") d r  = 0 ), for each subdomain, one may write 
Q r- 

Therefore, considering the approximate solutions, G(l) and i(2), the general integral form 

of the differential equation governing the motion for subdomain 1 is given by 
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and for subdomain 2 as 

(3.21) 

(3.22) 

Again, the essential boundary conditions, i.e., 

and 

are identically satisfied by the choice of the functions, and i 2 .  Therefore, for 

subdomain 1, Eq. (3.21) is rewritten as 

where @,I = ,{'). Similarly, for subdomain 2, 
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The order of differentiation on the primary variable in the integral equations, Eq. 

(3.23) and (3.24), is reduced to obtain the weak formulation. Using the divergence 

theorem Eq. (3.23) can be rewritten, for subdomain 1, as 

(3.25) 

and similarly, for subdomain 2, 

Recall that the boundary r is presumed to consist of boundaries on which the primary 

variable is specified and of boundaries on which the secondary variable is specified, and 

boundaries at the subdomain interface, and for subdomain k, r k  = r[ + ri + r1 . 

Therefore, the boundary integral on rk may be expressed as 

Noting that, @ k = 0 onr;. Therefore, the boundary integral on r; is identically zero, 

and Eq. (3.25) can be rewritten, for subdomain 1, as 
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Since the weight functions, @I1) and $ 1) , are arbitrary, they may chosen such that 

qjl) = -@I1), and using the Cauchy formula, = oi1)n$1) , 

Similarly, for subdomain, Q2, 

(3.27) 

(3.28) 

In the two-approximation formulation for the scalar-field problem, the two 

primary field variables, u 1  and u 2  are approximated independently, and continuity 

requirements between these two fields are satisfied at the subdomain interface boundary. 

The three-approximation approach, which makes use of a third approximation field for 

the primary variables along the subdomain interface boundary in addition to the 

approximations given along the boundary of the subdomains, is most general. Hence, 

only the three-approximation approach will be discussed for the vector-field problem. 

This primary variable, v, along the interface is assumed to be independent of the primary 
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variables, u1 and u2, of the subdomains to which it is attached. These independent 

approximations give rise to continuity requirements along the interface of the form 

I v-u1 = O  or v i - u P ) = o  on r 

I v-u2 = o or vi -uj2) = o on r 

These constraints can be satisfied in the integral sense as 

where Ap) and AI2) are Lagrange multipliers or weight functions in the form of the 

secondary variable along the interface. An additional continuity requirement in terms of 

the secondary variable along the common subdomain boundary is required. These 

secondary variables, fp) and f / 2 ) ,  are assumed to be independent of each other. These 

independent approximations give rise to continuity requirements along the interface of 

the form 

;!)+;/2) = O  on r I  

These constraints can be satisfied in the integral sense as 

(3.31) 

where Ai is a Lagrange multiplier or weight function of the form of the primary variable 

along the interface. Combining Eqs. (3.27) and (3.28) for the entire domain, including 
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the three continuity integrals at the interdomain boundary, Eqs. (3.29), (3.30), and (3.31), 

9 J  
and recognizing that fp) = (oh. 1) n j  (1) ) and f / 2 )  = (o(2)n(2)) yields 

In addition, for fluid mechanics, the continuity equation is given and satisfied 

independently over each domain as 

The weighted residual statements over the domains are given by 

(3.33) 

Here, note that no integration by parts is used on the continuity equations, and no 

relaxation of the differentiability on u can be accomplished since the resulting boundary 

conditions would not be physical. Combining Eqs. (3.33) yields 

(3.34) 

The integral form of Eq. (3.32) forms the basis of finite element approximations for solid 

mechanics, and both Eqs. (3.32) and (3.34) form the basis for fluid mechanics. These 

finite element approximations as well as other approximations will be discussed in more 

detail in the next section. 
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3.6. SPATIAL MODELING FOR MULTIPLE DOMAINS 

Spatial modeling for multiple domains using the finite element and finite 

difference methods for the approximation of the vector-field problem is outlined in this 

section. A brief overview of discretization methods is given followed by spatial 

modeling for solid and fluid mechanics domains. 

3.6.1. Overview of Discretization Methods 

Finite element and finite difference discretization methods for the vector-field 

problem are outlined in this subsection. For a more detailed discussion the reader should 

consult the literature. 

The finite element method 

The finite element method for the vector-field problem is developed in the same 

manner as for the scalar-field problem. In the vector-field problem, the dependent 

variable in the integral equations is a vector of components. In general, the inplane 

vector components (e.g., displacements parallel to the x andy axes) are approximated by 

the same shape functions. For isoparametric elements, this approximation is the same as 

that taken for the shape. For the elasticity problem, the consideration for the strain- 

displacement relation, the Jacobian transformation, and the displacement gradient 

interpolation results in a more complex (the product of three matrices) set of equations 

than for the scalar field. 

The finite difference method 

The finite difference method is ideal for solving the governing partial differential 

equations of a continuum. It represents a variety of equations in engineering science; 



however, the method has not been used in solid mechanics to the same degree as the 

finite element method42. The decline in the use of the finite difference method in solid 

mechanics is largely due to the limited flexibility of its treatment of boundary conditions. 

Most finite difference developments avoid the general problem of boundary conditions in 

one of the following ways: (1) a scalar problem, such as those of the previous chapter, is 

solved as an example and the boundary conditions are incorporated in the analysis using 

arguments based on symmetry of the independent variables in the derivative 

approximations or (2) an example is chosen with fixed boundaries to eliminate the 

presence of fictitious points. The lack of an intuitive procedure for elimination of the 

fictitious or external grid points introduced when a central difference operator is applied 

to a boundary point is one cause of the deficiency in the method. For the vector-field 

problem discussed herein, a 3x3 central difference template is used to evaluate the 

momentum equation, Eq. (3.20). An approach for eliminating the fictitious points based 

on physical arguments is presented in reference 43. The fictitious nodes are replaced by 

boundary tractions using a set of constitutive equations and the primary variables in the 

continuum. These points can then be eliminated, and the boundary tractions are 

introduced into the finite difference model. An alternative approach is to construct 

special forms of the difference equations for grid points at or near the b ~ u n d a r i e s ~ ~ .  

These forms make use of forward or backward difference operators to express differential 

forms. In general, standard forward or backward difference operators have higher-order 

truncation error than the central difference operators used for the differential equation. 

Hence, special forms using additional interior grid points are constructed such that the 

operators have the same order of truncation error as those operators used for the 
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differential equation. The latter approach is used in this work and will be discussed in 

some detail in the discussions of the patch test application given in this chapter. 

3.6.2. Overview of Single-Domain Spatial Modeling 

For a single domain, the finite element equations may be obtained by rewriting 

and manipulating slightly Eq. (3.16) over an element domain as 

(3.35) 

where oij are the approximate stress fields produced by the stress-strain and strain- 

displacement (or rate of deformation) relations and approximating the primary variable 

over the element domain by u = Nu,. 

General finite element development 

Using the Galerkin method, the weight function is given by @ = N . Substituting these 

approximations into the integral equation given in Eq. (3.35) and writing in matrix form 

yields 

(3.36) 

where d is the operator matrix defined, in general, by 



109 

a =  

and the stress vector (r is given by 

- 
ax a 

aY 
0 - 0  

0 0 -  a 
az 

- -  a a o  ay ax 
a a  
az ay 

a a 
aZ ax 

0 - -  

0 -  - 

CJ = b i i  0 2 2  0 3 3  012 0 2 3  0 i 3 l T  

General finite difference development 

Recall that in the finite difference methods, derivatives are approximated by 

difference expressions that transform the derivatives and consequently the partial 

differential equation to algebraic expressions and equations, respectively. Upon 

substitution of the approximation function into the differential equation, the equations can 

be recast in weighted residual form by selecting mi = S(x - xi, y - yi ). Note that the 

subscript i on the weight function is used to denote the subdomain, while the subscript i 

on the coordinate values, x and y ,  is used to represent the point in the physical domain at 

which the Dirac delta function is evaluated. This nomenclature is used throughout the 

mathematical formulation presented here. The weighted form of the residual reduces to 

the evaluation of the partial differential equations using the approximate solution 

evaluated at the N selected mesh points 

For a single domain, as in the finite element method, the finite difference 

equations may be obtained by interrogating the weighted residual equations over an 
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element domain where the element, e, surrounds grid point i (see Figure 2.5). The 

approximate solution for the primary variable is given by 

M 

m=l 
= C N m u m  or u = Nu, 

where M is the number of shape functions over the element. The weight function, @, is 

becomes 

and upon making use of properties of the Dirac delta function, 

This equation and the equations related to the finite difference formulation that follow are 

evaluated at point (xi,yi) where i denotes a point in the physical domain, and no 

summation is implied over the xi terms. Eqs. (3.36) and (3.37) are applicable to a general 

continuum irrespective of its physical constitution. Discipline-specific constitutive 

relations are considered at this point to continue with the finite element and finite 

difference developments specific to solid and fluid mechanics. Each of these 

developments will be discussed in turn. 

Solid mechanics - finite element discretization 

For solid mechanics, the constitutive relation relating stress and strain is given by 
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where the strain vector 

E = h i  E22 E33 2E12 2% 2Ei3IT , 

E is a matrix of material stiffnesses, and (ro and zo are initial stress and strain quantities, 

respectively. The strain-displacement relation is given by 

E = a U = a N U e  = B ~ , .  

Implicit in the definition of B is the use of the Jacobian matrix to transform from 

Cartesian coordinates to element natural coordinates used in the shape function 

development. In addition, in solid mechanics, the acceleration of the continuum is given 

Moreover, the second time derivative of the primary variable over the 
. .. a 2u 

at2 ' 
by v = u = -  

element domain is approximated by u = Nu,. Substituting the stress-strain, strain- 

displacement relations and the acceleration into Eq. (3.36) yields 

me - j ~ ~ a ,  me 
fie (3.38) 

+ j N T p b m e  + j N T t d r s e  

fie rSe 

or 

k,u, + m,u, = f, 

where k, is the element stiffness matrix, me is the element mass matrix, ue is the vector 

containing the generalized primary variables, u, is the vector containing the second time 

derivative of the generalized primary variables, and f e  is the element force vector 

containing the generalized secondary variables. Note that the acceleration term can be 

considered as an inertial force and included as part of the element force vector. 
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Assembling these element equations over the entire domain and enforcing continuity of 

the primary variable at the interelement boundaries yields the system of equations given 

by 

Mu + Ku = F 

nelem nelem 
where K = c I B T E B m e  ; M = c IpNTNme ; u is the assembly of all of the 

nodal degrees of freedom associated with the primary variables; u is the assembly of all 

of the nodal degrees of freedom associated with time derivative of the primary variables, 

nnodes 
and F = c l B T E z o  me - I B T c 0  me + INTp(b -u) me + I N T ?  ESe 

fie fie fie rSe 

Solid mechanics - finite difference discretization 

For solid mechanics, making use of the stress-strain and strain-displacement 

relations, and substitution of the primary variable approximations into Eq. (3.37), the 

element equation becomes 

For the second derivative difference approximation, the number of shape functions, M=3 

and u, T ={ui-l ui ui+l}. 

Therefore, as in the finite element method the difference equations may be written in the 

form 

meue +keue =fe 

where k, and me are the finite difference “element mass and stiffness” matrices, ue is the 

vector of generalized primary variables, u, is the vector of time derivatives of the 
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generalized primary variables, and f, is the finite difference generalized force vector. 

Assembling the element equations yields 

M u + K u = F  

where 

Nelem 
, u and u, contain all of the nodal 

1 1 

degrees of freedom associated with the primary variables and its time derivative, and 

Fluid mechanics- finite element discretization 

For fluid mechanics, the constitutive relation relating stress and the rate of 

deformation, Eq. (3.7), for an incompressible fluid is given by 

o = z - P I  

where the viscous stress vector, T, is given by 

T = b i i  222 233 212 223 2 i31T3 

u denotes the velocity vector, P is the pressure, and I is the identity matrix. The viscous 

stress is given by z = 2pD where ,u is the shear viscosity of the fluid and D is the rate of 

deformation tensor whose components are given by 

(3.39) 1 D.. =+ . +u . . )  
9 2 z,/ 

Hence, the rate of deformation is related to the deformation and may be expressed in the 

same form as the strain-displacement relation as 
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D = a f u = a f N U ,  = B f u e  

where a f is a differential operator defined by a f = Ta and B f = TaN . The 

transformation matrix, T, is used to introduce the scalar multiple of the shear components 

of the rate of deformation (see Eq. (3.39)) and is symbolically defined as 

T =  

.1 0 0  0 0 0- 
0 1 0 0 0 0  
0 0 1 0 0 0  
o o o ; o o  
o o o o ; o  
0 0 0 0 0 ;  

0 1 1  I 2 O l  

In addition, in fluid mechanics, the acceleration of the continuum is given by 

dv av 
dt at 

v = - = - + v . Vv . Moreover, the time derivative of the primary variable over the 

A 

element domain is approximated by v = U = NU, and P = NP, . Substituting the 

constitutive and rate of deformation relations along with the acceleration into Eq. (3.36) 

and rearranging yields 

or 

meUe +c,u, + k,u, -q,P, = fe 

where the element matrices k, and me and the element force vector, fe, are of similar form 

as those obtained in the solid mechanics development, ce, is a nonlinear element matrix 
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resulting from the total derivative of the velocity, u, is the vector containing the 

generalized primary variables, P, is the vector containing the element pressure variables, 

and U, is the vector containing the time derivative of the generalized primary variables. 

Hence, in the fluid mechanics development, the rate of change of the velocity - U is 

analogous to the second derivative with respect to time of the displacement ( u  in the 

solid mechanics development). Moreover, the first integral term of Eq. (3.40) can be 

thought of as an inertial force. Assembling these element equations over the entire 

domain and enforcing continuity of the primary variable at the interelement boundaries 

yields the system of equations given by 

MU +C(U)U +Ku -QP = F  (3.41) 

nelem nelem 
where K =  j 2 p B T B , m e ; M =  j p N T N m e ;  

fie fie 

nelem nelem 
jpNT(Nue)N me ; Q = C = j B T k I  me ; u is the assembledvector 

fie fie 

of all nodal degrees of freedom associated with the primary variables; P is the assembled 

vector of all nodal degrees of freedom 

vector of all nodal degrees of freedom 

nnodes 
variables and F = j N T p b  me 

associated with the pressure, U is the assembled 

associated with the time derivative of the primary 

+ j N T i d r s e  . 
rSe 

In addition to the element equations for momentum, Eq. (3.40), the element 

equations for continuity must also be developed from Eq. (3.19). Using the Galerkin 

method, the weight function corresponding to the continuity equation is given by 6 = fi . 
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Substituting the approximation for the weight function and the primary variable into Eq. 

(3.19) and writing the equation over the element yields 

or 

1 
qeue = O  

Assembling these element equations yields 

-QTu=O (3.42) 

Equations (3.41) and (3.42) can be combined into one system of equations and written in 

matrix form as 

[r :] 
or in a more symbolic form as 

(3.43) 

- .  
M U + K U = F  

T where U = {ul u2 

expressed in the same form as the equations for solid mechanics. Note that the system of 

equations, Eq. (3.43), is referred to as the primitive-variable model, the pressure-velocity 

model, or the mixed 

definite because of the zeros appearing on the main diagonal. In addition, the 

interpolation used for the pressure should be one order less than those that appear for the 

velocity field4! Furthermore, the pressure approximation may be discontinuous across 

interelement boundaries. In addition, because different orders of approximation are 

typically used for the velocity and pressure fields, the pressure may not appear at every 

u3 P} . Hence, the equations for fluid mechanics may be 

This mixed model results in a system that is nonpositive 
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node of an element, which can complicate the assembly process. An alternative 

formulation, called the penalty function f o r m ~ l a t i o n ~ ~ ' ~ ~ ,  circumvents this situation by 

treating the continuity equation as a constraint among the velocity components. This 

formulation is developed here for finite element discretization. 

From the weak form in Eq. (3.16), a functional describing the continuum motion 

can be obtained. The linear and bilinear forms of the functional over an element when 

the two-dimensional velocity field, ( V I ,  vz), satisfies the continuity constraint, Eq. (3.19), 

is given by 

Note that the pressure does not appear explicitly in the bilinear form. The quadratic 

functional is given by 
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The equations governing the flow of viscous incompressible fluids, Eqs. (3.16), and 

(3.19), are equivalent to minimizing of Eq. (3.44) subject to the constraint 

av, av2 
3x2 ax, 

G(vl,v2) = -+- - 0 .  - 

In the penalty function method, the constrained problem is reformulated as an 

unconstrained problem by minimizing the modified functional 

where the penalty parameter, ye, can be chosen for each element. The necessary 

conditions for the minimum of I, is a, = 0 or av1 I ,  = 0 and aV2 I ,  = 0 . 

where 6vl and 6v2 denote the first variation with respect to the velocity components, VI 

and v2, respectively. Therefore, 

- jp(bl -V1)6Vl me - jtl8vldTSe 

fie Pe 

(3.45) 

and 
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(3.46) 

These two statements, Eqs. (3.45) and (3.46), provide the weak forms for the penalty 

finite element model. While, the pressure does not appear in the weak forms explicitly, it 

is part of the boundary tractions, tl and 4. The penalty finite element model is obtained 

using Eqs. (3.45) and (3.46), the approximations for the primary variable and the time 

rate of change of the primary variable, v = u = Nu, and v = u = Nu,, respectively, and 

by choosing hl = h 2  = N . Assembling these element equations over the entire domain 

and enforcing continuity of the primary variable at the interelement boundaries yields the 

system of equations given by 

Mu +C(u)u +Ku + Su = F (3.47) 

nelem nelem 
where K =  j2pBTB,me; M =  j p N T N m e ;  

nelem nelem 
jpNT(NUe)N me ; S = C = y jN,xl N,x2 me ; u is the assembled 

fie fie 

vector of all nodal degrees of freedom associated with the primary variables; u is the 

assembled vector of all nodal degrees of freedom associated with the time derivative of 
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nnodes 
C the primary variables, F = jNTpb me + jNT? dTSe , and N,,i denotes 

fie Pe 

differentiation with respect to the independent variable, xi, i=l ,2 .  

Eq. (3.47) may be represented in a more symbolic form as 

MU+KU=F 
- 

where K = C(u)u + K + S . Note that this penalty finite element method yields a system 

of equations in terms of the primary variables, u, and does not include the pressures, P 

The pressures may be obtained from the computed velocity field by 

where ( V ~ ~ , V ~ ~ )  is the finite element solution of Eq. (3.47). 

Fluid mechanics - finite difference discretization 

For fluid mechanics, making use of the stress-rate of deformation constitutive 

relation, and substitution of the primary variable approximations along with the 

acceleration into Eq. (3.37), the element equation becomes 

Also, considering continuity, 

The difference equations may be written in the form 

meUe +c,u, + k,u, -q,P, = fe 
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and 

qeue = O  

where k ,  c,, q,, and me are finite difference “element” matrices, ue is the vector of 

generalized primary variables, lie is the vector of time derivatives of the generalized 

primary variables, and f, is the finite difference generalized force vector. Assembling the 

element equations yields 

M” + C(U)U +KU -QP = F 

-QTu=O 

where 

(3.48) 

(3.49) 

, u and lie are vectors that contain all nodal degrees of freedom 
1 

associated with the primary variables and its time derivative, and 

nnod s 

1 
F = Cfpb(xi,yi)+?(xi,yi)]. As in the finite element method, Eq. (3.48) and (3.49) 

can be combined into one system of equations and written in matrix form as 

[r :]{;I+ 
or in a more symbolic form as 

C(u)+K -Q 
-QT 0 I;) ={:I 

_ .  
M U + K U = F  

where U={u1 u2 u3 P}T. 
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As in the case for the scalar-field formulation, the shape functions for a nine-node 

quadrilateral finite element are used (see Table 2.1). The shape function at point z-1,j-1 is 

given by 

Ni-1,j-1=-(1-~)(1-q)-:( 1 1 - 5 2  11 - q )  - i ( 1 -  5)(1 -‘I?)+ 7 1 (1 - 5 2  11 - q 2 ) .  

5)(1- q)-  -(I 1 - 5211 - q)-  i ( l +  C)(l- ‘I?)+ ‘(1 - 5211 - q q ,  

4 

Similarly, 

1 = -(1+ 1 
2 4 

Ni+l,j- 

Ni+l, j+l = 7 1 (1 + 5)(1+ q)-  - 1 (1 + V 2 ) -  - 1 (1 - c2 rl )+ +(I- c2 11- q 2 ) ,  

Ni-l,j+l = -(I- 1 5)(1+ q)-  ‘(1 - c2 11 + q)-  $1 - 5)(1- ‘I2)+ ‘(1 - c2 11- q 2 ) ,  

2 2 

and 

4 2 4 

Then, for a square element 

1 

(3.50) 

The standard finite difference representation follows by direct substitution of Eqs. (3.50) 

for the cross-derivative terms of the momentum equation along with Eqs. (2.40) for the 
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second-order terms. As noted previously, a single spatial modeling approach (ie. ,  the 

finite element method or the finite difference method) is used for the single-domain 

formulation. While for multiple domains, homogeneous approaches and heterogeneous 

approaches are available. That is, the same method in each domain (homogeneous 

approach) or different methods in different domains (heterogeneous approach) are 

possible combinations of spatial modeling. 

3.6.3. Multiple-Domain Modeling - Homogeneous Discretization 

These homogeneous approaches make use of a single discretization method 

among all subdomains in which the domain is subdivided. The focus of this work is on 

the finite element and the finite difference methods as the spatial discretization methods. 

For homogeneous domain discretization developed herein, Eq. (3.32) is used to provide 

the mathematical basis for the three-approximation formulation. The generalized element 

equations, for both the finite element and finite difference methods, may be obtained by 

rewriting Eq. (3.32) over an element domain as 

(3.51) 

Note that in the potential energy f~ rmula t ion~~ ,  the continuity of the secondary variables 

was satisfied through the subsidiary conditions obtained through the minimization of the 
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potential energy. In this weighted residual formulation, the continuity of the secondary 

variables is satisfied in a weighted residual sense and the Lagrange multipliers, Ai (4  and 

xi, are represented by weight functions in the form of the secondary and primary 

variables, respectively. 

The form of the equations for the finite element and finite difference applications 

differs by the form of the element shape functions and the approximation selected for the 

weight functions, @. The formulation for solid mechanics and fluid mechanics differs by 

the constitutive relations. For the generalized element expansion of subdomain i, the 

independent approximations for the element generalized primary variables, (i. e., 

displacements or velocities), interface secondary variables (i.e., tractions or fluxes), the 

weight functions associated with the secondary and primary variables, and the interface 

variables, are, respectively 

U k  = N k U e  ' i k  =Rkak ; hk = R k ;  = T  and V = T U 1  (3.52) k '  

Both the solid and fluid mechanics derivations may be developed from Eq. (3.51), given 

the approximations of Eq. (3.52), the appropriate constitutive relation, and the choice of 

weight function. Each derivation is presented in turn in the following work. 

Solid Mechanics- finite element discretization 

Substituting the approximations of Eq. (3.52) into Eq. (3.51) along with the 

constitutive equations and using the Galerkin method in which @ = N , yields 
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where Bk = dNk for &1,2 and for the kth subdomain, the element matrices are 

and 

(3.54) 
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Solid Mechanics- finite difference discretization 

Substituting the approximations of Eq. (3.52) into Eq. (3.51) along with the 

constitutive equations and using the Dirac delta function as the weight function, 

+ [ jR:T drIe]ul - [ jR:Nl  drIe]ue1 

+ [ jR:T drIe]ul - [ !lX:N2 drIe]ue2 

rIe rIe 

rIe 

where, for k=l,2 and for the kth subdomain, the element matrices are 

(3.55) 

(3.56) 
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- - -  - 
Mi 0 O O O i i l  

0 M 2 O O O U l  
0 0 0 0 O . U I ’ +  
0 0 0 0 0 “1 

and 

- 
K1 0 0 
0 K2 0 
0 0 0 

KPl O K;: 

For both the finite element and the finite difference discretization strategies, 

assembling the element equations over the entire domain, enforcing continuity of the 

primary and secondary variables only within each subdomain and assembling the 

contributions along the element edges on the common subdomain boundary, and noting 

that uel and ue2 , uel and ue2 , fel and fe2 , and a1 and a2are completely uncoupled, 

- 0 0 O O O a 2  - -  - 

yields the system of equations given by 

or 

K s l  0 
0 Ks, 

KI, KI, 
0 0 

0 0 

where K, M, u, and f are the assembled stiffness matrix, mass matrix displacement 

vector, and force vector for the entire structure, and Kp, K,, KI, UI, anda are the 

assembled Kpk, Ksk, KI,, UI, anduk for all interfaces. The assembled stiffness and mass 

matrices, K and M, are block diagonal matrices containing the stiffness and mass 

matrices, Kk and Mk, of each of the subdomains along its block diagonal. The interface 

“stiffness” matrix thus contains coupling terms that augment the stiffness matrices of the 



128 

subdomains along the interface. All of the interface “stiffness” terms appear in the 

stiffness matrix with none in the mass matrix. Similar results may be obtained when 

damping is included. As for the scalar-field problem, the three-approximation approach 

for vector-field problems yields systems of equations (see Eqs. (3.57)) of similar form 

and with the same attributes. Again, due to the generalization for the finite difference 

approximations, the system of equations is not necessarily symmetric due to the off- 

diagonal submatrices, Kp and K,, nor are they banded or positive definite. Therefore, 

standard Cholesky solvers may not be used, unless full pivoting is performed to obtain 

the solution. The upper diagonal submatrix blocks contain uncoupled stiffness matrices. 

The symmetry of the matrix is determined by the choice of the weight function, @. In 

general, due to the introduction of fictitious nodes for the imposition of boundary 

conditions and loads in the finite difference discretization, the stiffness matrices are not 

symmetric but are positive definite and sparse. The coupling is accomplished through the 

introduction of the coupling terms in the matrices Kp, and K,, for both approaches. 

The number of additional degrees of freedom associated with the interface element is 

generally small in comparison with the total number of degrees of freedom in the 

subdomains. Thus, modeling flexibility is provided at a relatively small computational 

expense. The computational expense in this study may be reduced additionally as the 

efficiency of new solution algorithms for the system of equations in Eq. (3.57) is 

increased. 

While it is convenient to represent the weighted residual form over the domain 

using a single equation, the system of equations, Eq. (3 .57)  is obtained from the 

individual weighted residual expressions over each of the subdomains and the constraint 
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integrals. The first two matrix equations of the system of equations, Eq. (3.57) are 

derived from the weighted residual statement for subdomain k. That is, 

The third matrix equation of the system results from the reciprocity statement of the 

secondary variables. That is, 

The fourth and fifth matrix equations result from the continuity requirement for the 

primary variables, which is given by 

Note that the forms of the coupling element matrices that are not in terms of the 

weight functions are independent of the method of discretization. That is, 

and 

kI, = ITTR,d rTe  

rIe 

are of the same form for the finite element and finite difference discretizations. 

However, since the element shape functions, Nk, differ for the two methods, the interface 

matrices, k,, , in general, are not identical. 
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Fluid Mechanics- finite element discretization 

Substituting the approximations of Eq. (3.52) into Eq. (3.51) along with the 

constitutive equations and using the Galerkin method in which @ = N , yields 

- [ j T  N 1 R 1 d r  1.1 ai- [ j N 2 R 2 d r  T 1.1 ~ 2 +  [ I T  T R 1 d r  Ie]  ai+ [ r T  I T  R 2 d r  Ie]  a2 

+ [ j R l  Ie ]  [ 
rIe rIe rIe Ie 

Ie ]  +[ jR lTdr Ie ]u1- [  jRIY2IIII.]Y: T d r  U I -  j R l  N l d r  ue1 

rIe rIe rIe rIe 

(3.58) 

where Bk = dNk and Bkf = dfNk for k 1 , 2  and the elemental matrices are 
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and 

In addition to the element equations for momentum, Eq. (3.58), the element 

equations for continuity must be considered. Eq. (3.34) is used to provide the 

mathematical basis for the continuity equation for multiple domains. Using the Galerkin 

method, the weight function corresponding to the continuity equation is given by 6 = fi . 
Substituting the approximation for the weight function and the primary variable into Eq. 

(3.34) yields 

Fluid Mechanics- finite difference discretization 

Substituting the approximations of Eq. (3.52) into Eq. (3.51) along with the 

constitutive equations and using the Dirac delta function as the weight function, 

@, = 8, (x -xi , Y - Yi 1 = 8, (Xi , Yi 1, 
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where, for &1,2 and the elemental matrices are 

ue2 

(3.59) 

and 
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Considering continuity, and using the Dirac delta function as the weight function, 

= 8, (x - xi, y - yi ) = 8, (xi, yi ) , the continuity equation is given by 

For both the finite element and the finite difference discretization strategies, 

assembling the element momentum equations, Eqs. (3.58) and (3.59) over the entire 

domain, enforcing continuity of the primary variable only within each subdomain, and 

noting that uel and ue2 , uel and u e 2 ,  Pel and Pe2 , fel and f e 2 ,  andal anda2are 

completely uncoupled, yields the system of equations given by 

Mi 0 0 0 0 0 0  
0 M 2 O O O O O  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

c1 0 0 0 0 0 0  
0 c 2 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  
0 0 0 0 0 0 0  

- 0 O O Q 1  0 0 0  
0 0 0  0 Q 2 O O  
0 0 0  0 0 0 0  
0 0 0  0 0 0 0  
0 0 0  0 0 0 0  
0 0 0  0 0 0 0  
0 0 0  0 0 0 0  

(3.60) 
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along with 

or symbolically 

M O O 0  
0 0 0 0  
0 0 0 0  
0 0 0 0  

C(u)+K 0 - Q  K, 
0 0 0 KI  

-QT 0 0 0 

KP KT 0 0 

u I / =  U 

P 
a 

where K, M, C, Q are the assembled coefficient matrices for momentum and continuity, 

u and fare the displacement vector and force vector for the entire structure, and K,,, K,, 

KI, uI, anda are the assembled Kpk, K,,, KI,, UI, and a k  for all i~ t~ r faces .  

The first two matrix equations of the system of equations, Eq. (3.60) are derived 

from the weighted residual statement for subdomain k. That is, 

The third matrix equation of the system results from the reciprocity statement of the 

secondary variables. That is, 

The fourth and fifth matrix equations result from the continuity requirement for the 

primary variables, which is given by 
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- 
S I 0  0 0  
o s 2 0 0  

t o  0 0 0  
0 0 0 0  

- 0 0 0 0  

Note that the forms of the coupling element matrices that are not in terms of the 

weight functions are independent of the method of discretization. That is, 

and 

kI, = I T T R k d r T e  

rIe 

are of the same form for the finite element and finite difference discretizations. 

However, since the element shape functions, Nk, differ for the two methods, the interface 

matrices, k,, , in general, are not identical. 

In addition, for the penalty finite element model, the system of equations is of the 

same form as given in Eq. (3.60), except that penalty terms are included rather than the 

pressure terms. The resulting system of equations is given by 

- 

0 0 0 0 

- 

0 Ks, 
0 K2 0 
0 0 

- O KP2 K T  I2  0 

or symbolically 

c1 0 0 0 0  
0 c 2 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  

+ 

1 f 1 

f2 
0 
0 
0 

(3.61) 
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M O O  
0 0 0  
0 0 0  

where K, M, C, S are the assembled coefficient, mass, momentum, and penalty matrices, 

u and fare the displacement vector and force vector for the entire structure, and Kp, K,, 

KI, UI, anda are the assembled Kpk, K,,, KI,, UI, andak for all interfaces. Recall that the 

element penalty matrix for the kth subdomain is given by 

R 

3.6.4. Multiple-Domain Modeling - Heterogeneous Discretization 

The multifunctional weighted residual formulation of Eqs. (3.57) and (3.60) are 

used as the mathematical basis for multiple-domain modeling using heterogeneous 

discretization. Considering the two domains upon which this discussion is based, one 

subdomain is discretized using the finite element method, and the other subdomain is 

discretized using the finite difference method. Again, for the finite element development, 

the weight functions for the primary variables, u and P, are taken to be the finite element 

shape functions (z.e., @ k  = Nk and &k = k k ) ,  and for the finite difference development, 

the weight functions are taken to be the Dirac delta function (z.e., 

@k = 8, (x - xi, y - yi ) = 8, (xi, vi)). As expected, the set of element matrices becomes 

a hybrid of the matrices from the finite element method and the finite difference method. 

For completeness, these matrices are repeated here for the finite element and finite 

difference subdomains for solid mechanics as 
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T 
mel = I p N l  N1 dn: and me2 = pN21x=xi , 

Y=Yi  
Q? 

For fluid mechanics the element matrices are given by 

The coupling matrices at the element level are of the same form for both solid and fluid 

mechanics and these matrices are given by 

k,, = - INl T R d?" and kS2 = -R(xi,yi) , 

rIe 

and for the two domains, k=l,2, 
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k,, =-  REN, dr Ie ,  

rIe 

and 

3.7. COMPUTATIONAL IMPLICATIONS 

The multifunctional modeling approach for the vector field problem has been 

generalized such that it is applicable to solid and fluid mechanics as well as both 

homogeneous and heterogeneous discretization approaches. As such the computational 

implications are presented in this section for the generalized system of equations, Eqs. 

(3.57) and (3.60). Implications specific to a discipline or a discretization approach are 

highlighted, where appropriate. 

The assembled coefficient matrices, K, M, C, and Q, are block diagonal matrices 

containing the matrices, Kk, Mk, Ck, and Q k  of each of the subdomains along its block 

diagonal. The interface coupling matrix thus contains terms that augment the coefficient 

matrices of the subdomains along the interface. All of the interface coupling terms 

appear in the coefficient matrix associated with the primary variables with none in the 

matrix associated with the time derivative. Again, due to the generalization for the finite 

difference approximations, the system of equations is not necessarily symmetric due to 

the off-diagonal submatrices, Kp and K,, nor are they banded or positive definite. Note 

that, even for a single domain model, the mixed formulation results in a nonpositive 

definite matrix. Therefore, standard Cholesky solvers may not be used, unless full 

pivoting is performed to obtain the solution. The upper diagonal blocks contain 
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uncoupled fluid flow coefficient matrices. The symmetry of the matrix is determined by 

the choice of the weight function, @. For the finite element discretization, the subdomain 

matrices are symmetric. In general, due the imposition of boundary conditions and loads 

in the finite difference discretization, the coefficient matrices, Kk, are not symmetric but 

are positive definite and sparse. The coupling is accomplished through the introduction 

of the coupling terms in the matrices Kp, and K,, for both approaches and each of the 

disciplines discussed herein. 

In addition, due to the generalization for the finite difference approximations, the 

system of equations is not necessarily symmetric due to the off-diagonal submatrices, Kp 

and K,. The system unknowns in Eq. (3.57) and (3.60) consist of both primary and 

secondary variables given by the displacements or velocities, u, and the traction 

coefficients, a, respectively. Generally, the coupling matrices, K,, , are of the order of 

the length of the interdomain boundary, which results in a marked difference in the 

magnitude of the off-diagonal terms of the system matrix compared to its diagonal terms. 

This characteristic produces an ill-conditioned matrix whose solution can cause 

difficulties for some general-purpose solvers. Hence, the coupling matrix should be 

scaled such that it is of the same order as the subdomain stiffness. 

The load transfer mechanism of the multifunctional approach may be interrogated 

for the vector-field problem by considering the first and second rows of Eqs. (3.57) and 

(3.60) for solid and fluid mechanics, respectively. In either case the matrix equations of 

interest are given for solid mechanics by 
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or for fluid mechanics by 

These equations can be partitioned such that they correspond only to the primary 

variables, i i k  on the interdomain boundary 

(3.62) 

andKk denotes stiffness terms related toiik and there are no forces (including inertial 

forces M ku k ) on the interdomain boundary and assuming steady fluid flow ( 2 .  e., 

MkUk = 0) .  The expressions given by K k i i k  represent the internal fluxes at the 

interdomain boundary, and thus Eq. (3.62) may be written as 

- - 
fl = -Ksl a1 and f2 = -Ks2a2.  (3.63) 

For homogeneous discretization using the finite element method, substituting for 

KSi from Eq. (3.54) into Eq. (3.63) gives 

(3.64) Ie fi = - INTRl drIe  a1 = - INTil d r  

rIe rIe 

(3.64) Ie f2 = I N l R 2  dTIe a2 = -  IN;i2 d r  

rIe rIe 

Examining Eqs. (3.64) indicate that the evaluation of the internal forces is consistent with 

the evaluation of equivalent nodal forces in the presence of applied tractions on the 

boundary. In addition, Eq. (3.64) substantiates that the secondary variable along the 

interface is represented by distributed forces for each of the subdomains. 



141 

For homogeneous discretization using the finite difference method, substituting 

for KSi from Eq. (3.56) into Eq. (3.63) gives 

- h 

f 2  = - R 2 ~ 2  = -t2 

Examining Eq. (3.65) indicates that the evaluation of the internal forces is consistent with 

nodal forces evaluated at points in the presence of applied tractions on the boundary. In 

addition, Eq. (3.65) substantiates that the secondary variable along the interface for this 

approach is represented by nodal forces for each of the subdomains. 

For heterogeneous discretization using the combined finite element and finite 

difference methods, substituting for K,, from Eq. (3.54) into Eq. (3.56) gives 

rIe rIe 

(3.66) 

- h 

f 2  = - R 2 ~ 2  = -t2 

Examining Eq. (3.66)) indicates, for subdomain 1, that the evaluation of the internal 

forces is consistent with the evaluation of equivalent nodal forces in the presence of 

applied tractions on the boundary, while for subdomain 2, the evaluation of the internal 

forces is consistent with nodal forces evaluated at points. This reveals that for this 

multiple domain approach, the secondary variable along the interface for subdomain 1 is 

represented by distributed forces, and for subdomain 2, the secondary variable along the 

interface is represented by nodal or point forces. Thus for this heterogeneous modeling 

approach, it is required to transform the interface secondary variables into equivalent 

quantities. 
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3.8. VERIFICATION TEST CASE 

In this section, the multifunctional methodology for the vector-field problem is 

demonstrated on a verification test case. The application is described and the associated 

results and salient features are discussed. This application is considered a patch test for 

the formulation and verifies the applicability of the method for a configuration for which 

the solutions are known. Finite difference and finite element solutions for single- and 

multiple-domain configurations are presented to provide benchmark solutions for the 

multifunctional approach using heterogeneous discretization. Representative applications 

from the field of engineering science are presented in Chapter V. 

3.8.1. Patch Test 

As in the scalar-field problem, a patch test is used to determine the effectiveness 

of the multifunctional approach applied to a vector-field problem. A cantilevered plate is 

subjected to uniform inplane loading at the free end that yields a constant state of strain. 

In particular, this loading condition provides verification of the finite difference method 

for combinations of displacement and traction boundary conditions, and the method is 

validated for both the single- and multiple-domain models. 

Problem Statement 

The analysis domain and the boundary conditions are shown in Figure 3.1. The 

normal and tangential tractions are denoted by T, and T,, respectively, in the figure. This 

configuration has been used in the combined finite difference and finite element analysis 

reported by Dow et a1.20, and it is used here to provide a point of comparison. The length 

of the plate, L, is 20 in., the width, W, is 8 in., and the thickness, h, is 1 in. The material 

system is described by a Young’s modulus of 30,000 psi and a Poisson’s ratio of 0.3. An 
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applied displacement of 0.3 in. is applied at one end, and the opposite end is fixed. The 

other sides are free. 

For the finite element method, four-node elements are used to discretize the 

domain for all applications. Homogeneous discretizations for single- and multiple- 

domain models for the finite element and finite difference methods are presented. For the 

finite element discretization of a single domain, a finite element mesh of 20 elements and 

4 elements are used in the axial (x-direction) and transverse directions b-direction) , 

respectively, of the plate. For multiple domains with compatible meshes (ie. ,  nodal 

coincidence is maintained at the interface), two finite element meshes of 10 elements and 

4 elements are used in the x- andy-directions, respectively. For the finite difference 

discretization of a single domain, a finite difference grid consistent with the finite 

element mesh was used. That is, a grid of 21 grid points and 5 grid points are used in the 

axial (x-direction) and transverse directions b-direction), respectively, of the plate. 

Similarly, for multiple domains with compatible meshes, two finite difference meshes of 

11 grid points and 5 grid points are used in the x-andy-directions, respectively. For 

multiple domains with incompatible finite element meshes, one domain is discretized 

with 10 elements in the x-direction and 4 elements in the y-direction. While the other 

domain is discretized with 20 elements in the x-direction and 8 elements in they- 

direction. The multiple-domain discretization is shown in Figure 3.2. The finite 

difference discretization is consistent with the finite element mesh discretization. 
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Figure 3.1. Analysis Domain and Boundary Conditions of Cantilevered Plate. 

Interface 
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Figure 3.2. Multiple-Domain Discretization of Cantilevered Plate. 

Boundarv Conditions for Finite Difference Method 

The finite difference method is extensively tested for the single- and multiple- 

domain configurations to assure that the boundary conditions are being applied correctly. 

Generally, for the vector-field problem, a 3x3 or nine-point central difference template is 

used to evaluate the momentum equation, Eq. (3.20). On the boundary of the domain, the 

template introduces fictitious nodes. In reference 43, the fictitious nodes are eliminated 

using traction conditions, T, and T,, and the constitutive equations. When the differential 

equation is evaluated at the corner of the domain boundary (see point i,j in Figure 3.3), a 

fictitious node (point i+l, j+l)  is introduced for which there are no additional auxiliary 

equations. Thus, to eliminate the degrees of freedom associated with this fictitious node, 

non-physical higher-order derivatives of the constitutive equations are introduced that 

further complicate the approach. An alternative approach, used herein, is to apply the 
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momentum equation only to the nodes in the interior of the domain, while the differential 

equations representing the traction conditions are applied to the boundary nodes. Special 

of the difference equations for grid points at the boundaries are used to avoid the 

use of fictitious nodes. These forms make use of higher-order forward or backward 

difference operators to express the differential forms in order to maintain the same order 

of accuracy as the central difference operator. For multiple-domain spatial modeling, the 

momentum equation is applied to nodes on the subdomain interface boundary. The 

higher-order backward or forward difference operators are used to introduce the unknown 

traction on the interface. This approach yields equations at the interface in terms of the 

unknown tractions at that specified interface node only. If a central difference scheme 

were used for the traction conditions, the equations on the interface would be in terms of 

the unknown tractions at the specified interface node and adjacent interface nodes. In the 

latter case, the resulting equations can not be derived from the generalized 

multifunctional formulation. 

Fictitious Node 7 

Figure 3.3. Central Difference Template Applied at a Corner. 
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Analysis Results 

Several analyses have been performed: (1) two single-domain analyses, one with 

finite element discretization and one with finite difference discretization, respectively, (2) 

two multiple-domain analyses with homogeneous modeling, one with finite element 

discretization in each domain and one with finite difference discretization in each 

domain, and (3) one multiple-domain analysis with heterogeneous modeling with 

combined finite element and finite difference discretizations. All of the analyses yielded 

the exact solution within machine accuracy. Results for the internal forces or stresses 

along the interface for the analysis cases are shown in Table 3.1. The results are given at 

the locations along the width of the plate normalized by the plate width. 

For the finite element domains, the internal forces, Fx and Fy, obtained from the 

multiple-domain analyses are normalized by the value of the force obtained from the 

exact solution multiplied by the element length along the edge of the interface. Thus, for 

a consistent load and for the finite elements used in this study, a normalized value of 

unity represents complete agreement with the exact solution at the interior nodes ( ie . ,  

1/85y/W57/8). At the end nodes (i.e., y/W=O andy/W=l), a normalized value of one half 

represents complete agreement with the exact solution. 

For the finite difference domains, the stresses, ox and z.~, obtained along the 

interface from the multiple-domain analyses are normalized by the value of the normal 

stress obtained from the exact solution. Thus, a normalized value of unity represents 

complete agreement with the exact solution. Values in Table 3.1 for the normalized 

distance along the interface, y /K annotated with a superscript ‘F’ in parentheses denotes 

results obtained from the most refined subdomain (see Figure 3.2). 
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The single-domain analyses with either finite element discretization or finite 

difference discretization are in excellent agreement with the exact solution. Moreover, 

the interface force and stress results obtained with multiple-domain analyses using 

homogeneous modeling with either finite element discretization or finite difference 

discretization are in excellent agreement with the exact solution. For the heterogeneous 

modeling, the finite difference method was used in the coarsely discretized domain, and 

the finite element method was used in the more refined domain. Note that the stresses are 

used to compare the accuracy of the solution in the finite difference domain, and the 

internal forces are used to compare the accuracy in the finite element domain. The results 

obtained from this heterogeneous modeling approach are in overall good agreement with 

the exact solution. 

Table 3.1. Results of the Multifunctional Approach for the Cantilevered Plate. 

Analysis Type* 

SD/FD: 
MD/FE: 
MD/FD: 
MD/HM: 

Single-Domain with Finite Difference discretization 
Multiple-Domain with Finite Element discretization 
Multiple-Domain with Finite Difference discretization 
Multiple-Domain with Heterogeneous Modeling (combined finite 
difference and finite element discretizations) 
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CHAPTER IV 

REPRESENTATIVE SCALAR-FIELD APPLICATIONS 

4.1. GENERAL 

In this chapter, the multifunctional methodology is demonstrated on several 

representative scalar-field applications. The governing partial differential equation for 

the scalar-field problem is applicable to a variety of problems in engineering science. A 

sampling of these problems include a torsion problem, a heat conduction problem, and a 

two-dimensional flow problem. The applications are described, and the associated 

multifunctional analysis results and salient features are discussed. Finite difference and 

finite element solutions for single- and multiple-domain configurations are presented to 

provide benchmark solutions for the multifunctional approach using heterogeneous 

spatial discretizations. The finite element models use four-node Lagrange isoparametric 

finite elements, and the finite difference model uses a five-point template to approximate 

the governing differential equation. Stand-alone finite element software is used to 

generate the finite element stiffness matrices. The mathematical computing program 

MATLAB@ is used to generate the finite difference matrices and the interface coupling 

matrices and to solve the resulting system of equations. 

4.2. TORSION OF PRISMATIC BAR 

The torsion of a prismatic bar with a rectangular cross-section is used to 

demonstrate the multifunctional capabilities for the Poisson problem. As mentioned in 

Section 2.2.1, the torsion problem reduces to the nonhomogeneous partial differential 

equation 
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in which the stress function, 4 ,  must be constant along the boundary of the cross-section, 

8 is the angle of twist per unit length of the bar, and G is the shear modulus. The 

configuration of the bar is shown in Figure 4.1, and the analysis domain and the boundary 

conditions, are shown in Figure 4.2. 

Figure 4.1. Prismatic Bar with Rectangular Cross-Section. 

For a solid cross-section, the requirement of a stress-free boundary yields the boundary 

condition, 4 = 0 ,  on all four bounding surfaces along the bar length. Because of the 

symmetries in the problem, only one quadrant of the rectangular cross-section needs to be 

considered. Moreover, this symmetric model is useful in verifying the application of 

mixed boundary conditions. That is, the application of boundary conditions in terms of 

both primary and secondary variables. The quadrant considered in the symmetric model 

is shown in Figure 4.3. 

The shear stresses in the cross-section are 
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At the ends of the bar, the first moment integrated over the cross-sectional area must 

equal the twisting moment. This requirement gives 

M t  = 2j(bdxdy 

and the twisting moment is related to the angle of twist by 

M t  = GJ8 

where J is the torsional constant. 

( b = O  

f 
2b 

L ( b = O  

Figure 4.2. Analysis Domain and Boundary Conditions for Prismatic Bar with 
Rectangular Cross-Section. 

The analytical solution46 for the stress function is given by 

cosh(nny / 2a) nnx 
cosh(nn5 / 2a) 1 2a 

cos-, 3 2 ~ 8 ~ ~  00 1 (n-1)/2 
(b= 3 c 

Z n=1,3,5, ... n 

and by differentiating 
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and 

Assuming that b>a, the maximum shearing stress corresponding to the maximum slope, 

is at the middle points b=O) of the long sides x=+u of the rectangular cross-section. 

Substituting x=a, y=O and recognizing that 

2 
1+  -+-+... =- 1 1  z 

32 52 8 

yields 

2 1 ]Goa. 
n cosh(nzb/2a) 

In addition, the twisting moment, Mt, is given by 

192a O0 1 
z5 n=1,3,5, ... n 2a 

1--- ?tanh- 
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(a) Analysis Domain and Boundary Conditions (b) 6 x 6 Mesh of Grid Points 

Figure 4.3. Analysis Domain, Boundary Conditions and Typical Mesh for One Quadrant 
of Prismatic Bar with Rectangular Cross-Section. 

Spatial Modeling of Prismatic Bar 

Analyses are performed for the case of b=2a (i.e., rectangular cross-section), 

where a and b are dimensions of the cross-section shown in Figure 4.3(a). Three levels 

of grid refinement are used for the spatial modeling, namely meshes of (6 x 6), (1 1 x 1 l), 

and (21 x 21) grid points, each applied to one quadrant of the domain shown in Figure 

4.3(a). A typical idealization for a (6 x 6) mesh of grid points is shown in Figure 4.3(b). 

Multiple-domain analyses with the spatial modeling of these three levels of grid 

refinement and with coincident nodes along the common subdomain boundary have been 

performed for comparison. For the multiple-domain spatial modeling with non- 

coincident nodes along the common boundary, the mesh discretization of the most 

refined domain is consistent with the discretization used in that same region for the 

single-domain analysis. The mesh in the less refined domain has half the “element” 
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density of that used in the refined domain. This mesh is referred to by the syntax (1 1 x 

11)/(21 x 21). The coarse and fine finite element models, shown in Figure 4.4, are used 

in the finite element homogeneous spatial modeling. For the finite difference 

homogeneous modeling and the heterogeneous modeling, a finite difference mesh is used 

that has the same number of grid points as the finite element mesh in the respective 

domain. 

Figure 4.4. Multiple-Domain (1 1 x 11)/(21 x 21) Idealization. 

Twisting Moment for the Prismatic Bar 

Having found the values of the stress function, 4 ,  at the grid points in the solution 

domain by the respective spatial discretization approaches, the twisting moment may be 

found by repeated application of the trapezoidal rule for numerical integration. The 

computed twisting moment is then normalized by the analytical solution. The normalized 

twisting moment [Mt /Mt  analytical obtained using the homogeneous and heterogeneous 

spatial modeling approaches are given in Table 4.1. A value of unity indicates perfect 

agreement with the analytical solution. Results in Table 4.1 indicate that all analyses are 
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in good agreement with the analytical solution. The maximum error in any of the 

computed solutions is less than 6%. The maximum error value for the multiple-domain 

analyses is less than 3% and is observed for the multiple-domain heterogeneous modeling 

analysis (MD/HM) using combined finite difference and finite element discretizations. 

Note that some of the error is intrinsic to the coarse approximation of the integral using 

the trapezoidal rule. The integration error decreases as the mesh refinement is increased. 

A more accurate integration rule such as Simpson’s rule would produce results that are 

more accurate. Independent of the integral approximation, the solution accuracy for each 

of the modeling methods increases as the mesh refinement increases. For the same 

number of nodes or grid points, the finite element discretization yields more accurate 

solutions than the finite difference discretization. The results obtained for the single- 

domain modeling (e.g., SD/FE and SD/FD) and the multiple-domain homogeneous 

modeling with coincident nodes along the subdomain boundary are identical or nearly 

identical (see the results for (6 x 6), (1 1 x 11) and (21 x 21) meshes in Table 4.1). These 

results validate the multifunctional approach for coincident grid points along the 

subdomain boundary. The results obtained for the multiple-domain heterogeneous 

modeling approach with coincident grid points along the subdomain boundary are less 

accurate than corresponding results obtained using homogeneous modeling but are in 

overall good agreement. In addition, with the heterogeneous modeling, the accuracy of 

the twisting moment increases as the mesh refinement increases. With multiple-domain 

modeling using finite element (MD/FE) discretization and with non-coincident nodes, 

the accuracy of the twisting moment is bounded by the accuracy of the less refined (1 1 x 

11) and more refined (21 x 21) coincident meshes (see the results for the (1 1 x 11)/(21 x 
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Analysis 
Type* 

SD/FE 
SD/FD 
MD/FE 
MD/FD 
MD/HM 

21) mesh in Table 4.1). For the multiple-domain finite difference (MD/FD) 

discretization in both domains with non-coincident nodes, the twisting moment is slightly 

less accurate than the results obtained using the (1 1 x 11) coincident mesh, which is 

indicative of the error introduced by the finite difference interface constraints along the 

common boundary. For the heterogeneous modeling approach with coincident nodes 

along the interface boundary, the twisting moment is less accurate than the homogeneous 

approach with either finite element modeling or finite difference modeling. These results 

reveal the error introduced in the heterogeneous modeling approach for this problem due 

to the interface constraints. However, recall that the twisting moment is a secondary 

result, and the errors obtained are larger than those obtained for the primary variable, 4 ,  

the stress function. For the heterogeneous modeling approach with non-coincident nodes, 

the twisting moment is slightly more accurate than the (1 1 x 1 1) coincident mesh, which 

is indicative of the benefit gained ( ie . ,  more accurate field approximation and interface 

constraint) by the combination of the finite element and finite difference discretizations. 

Normalized Twisting Moment, M t  / ( M t  )rmnbticnz 

Mesh Density 
(6 x 6) (11 x 11) (21 x 21) (11 x 11)/(21 x 21) 
0.9871 0.9944 0.9976 
0.9743 0.9897 0.9964 
0.9871 0.9944 0.9976 0.9959 
0.9746 0.9898 0.9964 0.9834 
0.9498 0.9738 0.9878 0.9749 

Table 4.1. Normalized Twisting Moment for the Prismatic Bar. 
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Maximum Shear Stress for Prismatic Bar 

The maximum shear stress, T occurs at x=a andy=O and is obtained by 

evaluating a@/ax at that point. For the finite element method, the shear stress may be 

obtained from the element shape functions. However, a more general approximation is 

used herein to compare the finite element and finite difference computations. Generally, 

to determine this partial derivative, a@/ax , of the stress function, a smooth curve 

containing the stress function values at the grid points can be assumed to represent the 

function, @ . Newton’s interpolation formula47, used for fitting such a curve, can be used 

to define the function that is differentiated and evaluated at x=a to give the value of 

maximum shear. However, due to errors introduced in the interpolation for large 

amounts of data, a simple backward-difference approximation with the error of the order 

of Ax2 was used such that 

where the subscripts, i,j, represent the location of the grid point at which the stress 

function is sampled (i.e., x=a, y=O in this case) and Ax is the distance between the ith and 

the i-lth grid point. The values for the maximum shear stress, T ~ ~ ,  obtained using the 

multifunctional approach with single-domain (e.g., SD/FE and SD/FD) and multiple- 

domain analyses are normalized by the analytical solution, and these normalized values 

are given in Table 4.2. A value of unity indicates perfect agreement with the analytical 

solution. The results indicate that all of the analyses are in excellent agreement with the 

analytical solution. The maximum error in any of the computed solutions is less than 2%. 

This maximum error value is obtained for the multiple-domain heterogeneous modeling 
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analysis (MD/HM). In general, the solution accuracy for each of the modeling methods 

increases as the mesh refinement increases. An exception to this characteristic is 

observed for the finite element discretization (see the results for the (1 1 x 11) and the (21 

x 21) meshes in Table 4.2). In this case, the results are oscillating about the analytical 

solution. For the same number of nodes or grid points, the finite element discretization 

yields more accurate solutions than the finite difference discretization. The results 

obtained for the single-domain modeling and the homogeneous modeling with coincident 

nodes along the subdomain boundary are identical or nearly identical. As in the case for 

the twisting moment, this characteristic indicates that the multifunctional approach does 

not introduce error for the compatible meshes. The results obtained for the multiple- 

domain heterogeneous modeling approach with coincident grid points along the 

subdomain boundary are less accurate than corresponding results obtained using 

homogeneous modeling; however, the results are in overall good agreement. In addition, 

with the heterogeneous modeling, the accuracy of maximum shear stress increases as the 

mesh refinement increases. With multiple-domain modeling using finite element 

discretization and with non-coincident nodes, the accuracy of the twisting moment is 

bounded by the accuracy of the less refined (1 1 x l  1) and more refined (21 x 21) 

coincident meshes (see the results for the (1 1 x 11)/(21 x 21) mesh in Table 4.2). For the 

finite difference discretization in both domains with non-coincident nodes, the twisting 

moment is slightly less accurate than the (6 x 6) coincident mesh, which is indicative of 

the error introduced by the finite difference interface constraints along the common 

boundary. However, the error for all of the finite difference homogeneous analyses is 

much less than 1%; thus, the difference in the homogeneous modeling is not appreciable. 
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Analysis 
Type* 

SD/FE 
SD/FD 

For the heterogeneous modeling approach with non-coincident nodes, the twisting 

moment is slightly less accurate than the (1 1 x 1 1) coincident mesh, which, again, is 

indicative of the benefit gained (ie. ,  more accurate field approximation and interface 

constraint) by the combination of the finite element and finite difference discretizations. 

Table 4.2. Normalized Maximum Shear for the Prismatic Bar. 

Normalized Maximum Shear, zmax zmax I( 
Mesh Density 

(6 x 6) (11 x 11) (21 x 21) (11 x 11)/(21 x 21) 
1.009 0.9997 0.9993 

0.9940 0.9973 0.9986 
MD/FE 
MD/FD 

1.009 0.9997 0.9993 0.9995 
0.9942 0.9973 0.9986 0.9940 

* SD/FE: 
SD/FD: 
MD/FE: 
MD/FD: 
MD/HM: 

Single-Domain with Finite Element discretization 
Single-Domain with Finite Difference discretization 
Multiple-Domain with Finite Element discretization 
Multiple-Domain with Finite Difference discretization 
Multiple-Domain with Heterogeneous Modeling (combined finite 
difference and finite element discretizations) 

4.3. HEAT CONDUCTION PROBLEM 

In this section, the basic equation of heat conduction is described briefly to 

provide a convenient reference for the fundamental concepts and equations governing 

conductive heat transfer. The starting point for heat conduction analysis is Fourier’s law 

given in Cartesian vector form for an isotropic medium4* 

where q is a vector whose components are the heat flow per unit area in the respective 

Cartesian directions, k is the thermal conductivity coefficient that may be a function of 

the temperature, T, and 
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In an isotropic solid with temperature-dependent thermal conductivity, the law of 

conservation of energy with Fourier’s law yields the thermal energy equation. The law of 

conservation of energy is given by 

where Q is the internal heat generation rate per unit volume, p is the mass density, c is the 

specific heat, and t i s  time. For constant thermal properties and steady-state heat transfer, 

the heat conduction problem reduces to a nonhomogeneous partial differential equation 

of the form of Eq. (2.1) and is given by 

In this work, two-dimensional heat conduction in a square plate (see Figure 4.5) is used 

to demonstrate the multifunctional capabilities for thermal analysis. For this problem, the 

time-independent, heat conduction equation is 

subject to the boundary conditions 

T = O  o n r p  ={lines x = l a n d y = l }  
aT - = 0  o n r S  ={lines x=Oandy=O} 
an  
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Figure 4.5. Analysis Domain and Boundary Conditions for the Steady-State Heat 
Conduction in a Square Plate. 

Spatial Modeling of Square Plate 

The spatial discretizations in the analyses were selected to be comparable to those 

reported by  redd^^^ for this problem. Coarse and fine models are used in each of the 

subdomains. The coarse model has a (2 x 3) nodal grid, and the fine model has a (3 x 5) 

nodal grid. The syntax (m  x n)  is used to denote spatial modeling with m grid points in 

the x-direction and n grid points in the y-direction. The number of grid points, rather than 

the number of elements, in the coordinate directions are used to describe the mesh 

densities to provide consistency when discussing the finite difference and finite element 

discretizations. Combinations of these mesh densities are used for comparative purposes 

where the letters C and F are used to denote the coarse and fine models, respectively. A 

multiple-domain model with finite element models discretized with a fine (3 x 5) nodal 

grid and a coarse (2 x 3) nodal grid is shown in Figure 4.6. Curves labeled C/C or F/F 

denote multiple-domain coarse or fine models, respectively, with coincident nodes along 

the common subdomain boundary. Multiple-domain analyses with finite element 
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discretization or finite difference discretization are denoted by MD/FE and MD/FD, 

respectively. Similarly, multiple-domain analyses using heterogeneous modeling with 

the combination of finite difference and finite element discretizations are denoted by 

MD/HM. 

Figure 4.6. Homogeneous (3 x 5)/(2 x 3) Idealization. 

Temperature Distribution for Square Plate 

The temperature distribution as a function of the distance along the y=O line is 

shown in Figure 4.7 for the different spatial discretizations and modeling approaches. 

The analytical solution for this problem is given by 

(- 1>" cos[(2n - l)ny/2]cosh[(2n - l)m/2] 

(2n - 1)' cosh[(2n - l)z/2] 

In addition, a 1-parameter Ritz approximation is given by 

T(x,y)=-Sc;)(l-xql-y2) 
16k 
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Results obtained using the multifunctional approach are compared to the 

analytical solution (solid line in the figure) and a Ritz approximation (dashed line in the 

figure). Finite element (see Figure 4.7(a)) and finite difference (see Figure 4.7(b)) 

solutions were obtained using a multiple-domain analysis with homogeneous spatial 

discretization and are in excellent agreement with the analytical solution. These results 

illustrate that the temperature at x=y=O obtained with a coarse finite difference mesh is 

more accurate than that obtained with a comparable finite element mesh (see curves 

labeled MD/FE-C/C and MD/FD-C/C in Figure 4.7(a) and Figure 4.7(b)). This 

difference decreases as the meshes are refined, although the finite element model 

continues to produce a higher temperature value at x=y=O. The multiple-domain 

analyses with non-coincident nodes produce accurate results even at the subdomain 

common boundaries. The multiple-domain results for heterogeneous spatial 

discretization approaches are shown in Figure 4.7(c) and indicate the effectiveness of the 

multifunctional approach. The fine (3 x 5 )  nodal grid (see Figure 4.6) is discretized with 

the finite difference method, and the coarse (2 x 3) nodal grid is discretized with the 

finite element method. These results are in overall agreement with the results obtained 

with the homogeneous approaches. The homogeneous and heterogeneous results are 

compared in Figure 4.7(d) for models with non-coincident nodes with a fine model in the 

left domain and a coarse model in the right (see Figure 4.6). These results indicate that 

temperatures obtained with the heterogeneous approach are slightly lower than for the 

homogeneous approach with either finite element or finite difference discretizations. In 

addition, the results, obtained by using the finite difference discretization in one or both 

of the domains, illustrate the slight difference in the temperature at the interface from the 
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left and the right domains. However, note that the uniqueness of the solution along the 

interface boundary is satisfied only in an integral sense and this slight difference does not 

detract from the overall accuracy and effectiveness of the multifunctional approach for 

this Poisson problem. 

An additional analysis has been performed to demonstrate the multifunctional 

capability for an inclined subdomain boundary (boundary not parallel to the y-axis). In 

this analysis, multiple-domain modeling with the finite element method is used. The 

finite element model used in the analysis has a (3 x 6) mesh of grid points in the left 

domain and a (2 x 3) mesh of grid points in the right domain as shown in Figure 4.8. The 

results for this multiple-domain finite element analysis are shown in Figure 4.9. These 

results (open squares) are compared to the analytical solution (solid line), the Ritz 

approximation (dashed line) and the multiple-domain finite element analysis (see Figure 

4.6 for the model discretization) with a subdomain boundary parallel to the y-axis (open 

circles). The results indicate the effectiveness of the multifunctional approach for the 

inclined subdomain boundary. 
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Figure 4.7. Temperature Distribution Along Insulated Edge of Square Plate. 
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Figure 4.8. Spatial Discretization for Inclined Interface for Square Plate. 
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Figure 4.9. Temperature Distribution Along Insulated Edge of Square Plate with Inclined 
Interface. 

4.4. POTENTIAL FLOW PROBLEM 

A two-dimensional fluid flow problem is used to demonstrate the multifunctional 

capabilities for a fluid mechanics problem. As shown in Section 2.2.2, the equation 

governing irrotational fluid flow reduces to the Laplace equation 
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a2u a2u 
ax2 ay2 
-+-=o 

where u can be either the stream function, u/, or the velocity potential, 4 .  In this work, 

the two-dimensional, steady, inviscid flow between two infinite plates is considered. A 

rigid, infinite cylinder or radius, R, with an axis at a right angle to the flow is assumed to 

be in the passageway between the plates as shown in Figure 4.10. Far upstream from the 

cylinder there is a uniform flow field with a velocity of VO. Because of the symmetries in 

this problem, only one quadrant of the domain is considered. The analysis domain and 

the boundary conditions on the velocity potential, 4 ,  are shown in Figure 4.1 1. 

I-2a.I 

Figure 4.10. Domain of Flow Around Cylinder. 
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Figure 4.1 1. Analysis Domain of Flow Around Cylinder. 

The finite element models used in this problem are shown in Figure 4.12. A reference 

solution is obtained using the finite element model shown in Figure 4.12(a). The local 

and global finite element models used in the homogeneous and heterogeneous spatial 

modeling approaches are shown in Figure 4.12(b). For the heterogeneous modeling, a 

finite difference mesh is used in the coarsely refined domain that has the same number of 

grid points as the finite element mesh used in the same domain. This discretization 

strategy illustrates the use of the finite element method to represent the complex 

geometry around the cylinder and the use of the finite difference method away from the 

curved boundary where it is most suitable. 
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(a) Reference Model (b) Multiple Domain Model 

Figure 4.12. Spatial Discretization for One Quadrant of Domain of Flow Around 
Cylinder. 

Contour plots for the velocity potential, the horizontal velocity component and the 

transverse velocity component are shown in Figure 4.13, Figure 4.14, and Figure 4.15, 

respectively. In each of these figures, the results using the multifunctional approach are 

compared to results obtained from the single-domain analysis using the reference model 

(see Figure 4.12(a)). As shown in the figures, the velocity potential and the velocity 

components obtained using the multifunctional approach are in excellent agreement with 

the reference solution. In the multiple-domain analyses, the slight discontinuity in the 

horizontal and transverse velocity components at the interface (see Figure 4.14(b) and 

Figure 4.15(b)) is due in part to the difference in the computation of the velocity across 

the interface. Unlike in the single-domain analysis (ie. ,  reference solution), in the 

multiple-domain analyses, the velocities are not averaged across the interface. 
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(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 4.13. Contour Plot of Velocity Potential for Flow Around Cylinder. 

(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 4.14. Contour Plot of Horizontal Velocity Component for Flow Around Cylinder. 
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(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 4.15. Contour Plot of Transverse Velocity Component for Flow Around Cylinder. 

The analytical potential solution for the tangential velocity around a cylinder in an 

infinite domain, valid on the cylinder surface, is given by 

where the angle, 8, radial distance, r, and the tangential velocity, ut, can be computed 

from the relations 

e=tan-'(i) r = [ ( u - x )  2 + y  2]1/2 , ut =u,sine+uycose.  
U - X  

The tangential velocity as a function of the angular distance along the cylinder surface is 

shown in Figure 4.16. Results are shown for the tangential velocity around a cylinder in 

an infinite domain for which an analytical solution is known and in a finite domain for 

which a reference solution is obtained using a refined single-domain finite element 

model. For the infinite domain configuration, the plate length to cylinder radius ratio, 
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2a/R , and the plate width to cylinder radius ratio, 2b/R,  are 40 and 20, respectively, and 

the domain can be considered as infinite. That is, the cylinder radius, R, is very small 

compared to the length, 2a, and the width, 2b. For the finite domain configuration, the 

plate length to cylinder radius ratio, 2a /R ,  and the plate width to cylinder radius ratio, 

2b/R,  are 4 and 2, respectively, and the domain is considered to be finite. The tangential 

velocity obtained for the multifunctional approach is in overall good agreement with the 

analytical solution for the infinite domain and with the reference solution ( ie . ,  single- 

domain analysis) for the finite domain. Results obtained with homogeneous multiple- 

domain analyses with finite element discretization in each domain are denoted by open 

circles in the figure. Results obtained with heterogeneous multiple-domain analyses with 

combined finite difference and finite element discretization are denoted by open squares 

in the figure. The tangential velocity obtained with the homogeneous modeling approach 

is in excellent agreement with the analytical and reference solutions for the infinite and 

finite domain configurations. The tangential velocity obtained with the heterogeneous 

modeling approach is more accurate for the infinite domain configuration than for the 

finite domain configuration. This characteristic is indicative of the performance of the 

finite difference approach, for this problem, in a gradient region. 
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Figure 4.16. Tangential Velocity for Flow Around Cylinder. 

4.5. SUMMARY 

In this chapter, the multifunctional methodology has been described and 

demonstrated for a variety of problems in engineering science. These selected problems 

included second-order problems of solid mechanics, heat transfer, and fluid mechanics 

that can be formulated in terms of one dependent variable. The governing equation in 

each case is either the Laplace or the Poisson equation. The analyses performed have 
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demonstrated the effectiveness and accuracy of the solutions obtained for the respective 

problems. In all cases, the results obtained using the multifunctional methodology were 

in overall good agreement with the reported analytical or reference solution. In the next 

chapter, the multifunctional methodology is demonstrated for problems whose motion is 

described by coupled partial differential equations expressed in terms of two dependent 

variables -- vector-field problems. 
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CHAPTER V 

REPRESENTATIVE VECTOR-FIELD APPLICATIONS AND 

EXTENSIONS 

5.1. GENERAL 

In this chapter, the multifunctional methodology is demonstrated on two 

representative vector-field applications. The applications are described and the 

associated results and salient features are discussed. The applications include a plane 

stress problem and a plane flow problem. Finite difference and finite element solutions 

for single- and multiple-domain configurations are presented to validate the 

multifunctional approach using heterogeneous discretization. The finite element models 

use four-node Lagrange isoparametric finite elements, and the finite difference model 

uses a nine-point template to approximate the governing differential equation. Stand- 

alone finite element software is used to generate the finite element stiffness matrices. 

The mathematical computing program MATLAB@ is used to generate the finite 

difference matrices and the interface coupling matrices and to solve the resulting system 

of equations. In addition, extensions to multiple discipline analyses are discussed. 

5.2. PLANE STRESS PROBLEM 

A rectangular plate of uniform thickness subjected to a uniform tensile load and 

with a central circular cutout (shown in Figure 5.1) is an ideal example problem with 

which to verify the multifunctional approach. The example problem has a variety of 

practical applications (ie. ,  rivet holes, aircraft door and window openings, etc.), and an 

exact solution is a ~ a i l a b l e ~ ~ .  The plate has been used by many researchers to verify 
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aspects of proposed computational methodologies. For example, the plate problem has 

been used by Ransom’ to verify global/local analysis technology, by Aminpour et al.25 to 

verify multiple-domain homogeneous modeling using the finite element method, and by 

Rose” to verify an adaptive geometry generator used with a multiple-domain finite 

element model. The plate configuration is such that the state of stress is represented by 

the condition of plane stress or plane strain. The membrane displacements, u and v, in 

the axial (x-direction) and transverse @direction) directions, respectively, represent the 

plate configuration in plane stress and plane strain. 

Two configurations of this problem have been studied: an infinite plate and a 

finite-width plate. The infinite plate configuration has a central cutout that is very small 

relative to the length and width of the plate, and the exact solution for this problem was 

obtained by T i m ~ s h e n k o ~ ~ .  The stress distribution in the neighborhood of the cutout 

exhibits a stress concentration, but from Saint-Venant’s principle, the stress distribution 

is essentially uniform at distances that are large compared with the radius of the cutout. 

The finite-width plate configuration has a larger central cutout relative to the length and 

width, and the stress distribution away from the cutout is not uniform. The finite-width 

plate with a central circular cutout has been discussed by H ~ w l a n d ~ ~  and Peterson”. 

For the infinite plate configuration, herein, the length to radius ratio, 2a /R ,  and 

the width to radius ratio, 2b/R,  are 40 and 20, respectively, and the plate can be 

considered as infinite. That is, the cutout radius, R, is very small compared to the length, 

2a, and the width, 2b. The material system is aluminum with a Young’s modulus of lo7 

psi, and a Poisson’s ratio of 0.3, and the thickness of the plate, h, is 0.1 in. A uniform 

running load, (NJo, is applied to each of its ends, and the other sides are free. The plate 
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example problem is used to verify the multifunctional approach for both homogeneous 

and heterogeneous spatial modeling. Because of the symmetry that exists, one quadrant 

of the domain (see Figure 5.2) is modeled. In addition, boundary conditions are shown in 

Figure 5.2 where T, and Tt denote normal and tangential tractions, respectively. For the 

multiple-domain analysis, a refined model is used in the near-field subdomain (Le., the 

local region near the cutout), and a coarse, less-refined model is used in the remainder of 

the domain. A single-domain analysis using a finite element model that has the same 

number of nodes and elements in the near-field region as the multiple-domain model is 

used to obtain a reference solution with which to compare the solution obtained with the 

multifunctional approach. The single-domain model and the multiple-domain model 

(used in the homogeneous spatial modeling) are shown in Figure 5.3. For the 

homogeneous modeling, a finite element (FE) mesh is used in each region. For the 

heterogeneous modeling, a finite difference (FD) mesh is used in the far-field region that 

has the same number of grid points as the finite element mesh in that region. A finite 

element mesh is used in the region near the cutout. 

Figure 5.1. Domain of Plate with Central Circular Cutout. 
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Figure 5.2. Geometric Configuration for One Quadrant of Plate with Central Circular 
cutout. 

(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 5.3. Finite Element Models for One Quadrant of Infinite Plate with Central 
Circular Cutout. 

The exact elasticity solution46 for an infinite plate with a circular cutout loaded in 

tension indicates that the stress concentration factor, K,, is 3.0 at the edge of the cutout 

and is given by 

The stress concentration factor is defined as the ratio of the maximum stress resultant, 

(Nx)max, to the uniform far-field stress resultant, (Nx)o. Stress concentration factors 
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obtained using the multifunctional approach with homogeneous and heterogeneous 

modeling are 3.08 and 3.10, respectively, which is within 2.7% and 3.3% of the elasticity 

solution. The stress distributions of the hoop stress resultant (N,)e along the midwidth, 

8=n, (denoted as line AB in Figure 5.2) and midlength, 0=n/2, (denoted as line CD in 

Figure 5.2) normalized by the far-field stress resultant (Nx)o, are shown in 

Figure 5.4 as a function of the distance from the plate center normalized by cutout radius, 

R. The elasticity solution for the stress distribution is given by 

and is shown by the solid lines in the figure. The stress distributions obtained from the 

multifunctional analyses using homogeneous modeling are indicated by the open circles 

in the figure. The stress distributions obtained from the multifunctional analyses using 

heterogeneous modeling are indicated by the open squares in the figure. Excellent 

correlation is observed for all analyses. 

Contour plots of the magnitude, 6 ,  of the displacement vector (Le., 

6 = d u 2  + v 2  ) superimposed on the deformed shape and the longitudinal stress 

resultant, N,, are shown in Figure 5.5 and Figure 5.6, respectively. The multiple-domain 

analysis results are shown for homogeneous modeling using finite element discretization 

in each of the subdomains. To aid visual comparison, the deformation has been 

magnified by 10% of the maximum domain dimension. The displacement contour plots 

reveal the nearly linear variation along the plate length in the far-field region of the plate 

with only local changes near the cutout. The stress resultant contour plots reveal the 

uniform stress state away from the cutout and the peak stress in the neighborhood of the 
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cutout. While not shown, the results for the multiple-domain heterogeneous modeling 

approach are nearly identical to those shown in Figure 5.5 and Figure 5.6, and thus have 

not been included. These contour plots illustrate further the excellent correlation among 

the multifunctional approach using homogeneous and heterogeneous modeling and the 

single-domain solution. 

Multiple-Domain(FD/FE) 

3.0 ~ 

2.5 - 

2.0 - 

N o  1.5 l i  I 

I 

-1.0 4 
I 

0 5 10 15 

r/R 
20 

Figure 5.4. Longitudinal Stress Distribution along Midwidth and Midlength for Infinite 
Plate with Central Circular Cutout. 
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(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 5.5. Displacement Magnitude Distribution for Infinite Plate with Central Cutout. 

(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 5.6. Longitudinal Stress Resultant Distribution for Infinite Plate with Central 
cutout. 

While the infinite plate analyzed, herein, is an excellent test of the multifunctional 

approach, gradients in the deformation and the stress resultants, as indicated in Figure 5.5 

and Figure 5.6, are well away from the subdomain interface boundary. Thus, to assess 

the accuracy of the approach when the subdomain interface is within a high gradient 

region, a second configuration is analyzed. 

In the finite-width plate configuration, the length to radius ratio, 2 a / R ,  and the 

width to radius ratio, 2b/R,  are 4 and 2, respectively, and the plate is considered to be 
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finite. The aluminum material system and the thickness that was used for the infinite 

plate is used here for the finite-width plate. The finite-width effects on the stress 

concentration factor for isotropic plates with cutouts have been reported by Peterson”. 

By including finite-width effects, the stress concentration factor is reduced from the value 

of three for an infinite plate. The stress concentration factor should be applied to the 

nominal stresses, which are based on the net cross-sectional area associated with the load 

application. For the case of a finite-width plate with a cutout, the net cross-sectional area 

corresponds to 

Anet = (2b - 2Ro)h = 2bh 1 - - [ 8) 
where h is the plate thickness, and the nominal longitudinal stress for an uniaxial load, P, 

can be expressed as 

The geometry definition for the finite-width plate, herein, gives a stress concentration 

factor of 2.16 reported by Peterson. 

Multiple-domain homogeneous and heterogeneous modeling approaches are used 

for the finite-width plate. A refined model is used in the near-field domain, and a less- 

refined model is used in the far-field domain. The single-domain model and the multiple- 

domain model are shown in Figure 5.7. In the multiple-domain homogeneous modeling 

approach, finite element (FE) discretization is used in each domain. In the multiple- 

domain heterogeneous modeling approach, finite difference (FD) discretization is used in 

the far-field domain, and finite element (FE) discretization is used in the near-field 

domain around the cutout. 
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(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 5.7. Finite Element Models for One Quadrant of Finite-Width Plate with Central 
cutout. 

Stress concentration factors obtained using the multifunctional approach with 

homogeneous (multiple-domain FE/FE) and heterogeneous (multiple-domain FD/FE) 

modeling are 2.19 and 2.73, respectively. These factors are higher by 1.4% and 26.4%, 

respectively, than the values given in Peterson46. Note that the solution obtained using 

the heterogeneous modeling approach with finite difference and finite element 

discretizations is nearly 30% in error. This error is likely due to the inaccuracy of the 

finite difference method in the high gradient region and to the constraint conditions along 

the interface. 

To delineate this error, additional heterogeneous analyses are performed using 

finite difference domains with grid spacing in the transverse direction of one half (2 .  e., 

9x9 mesh of grid points) and one fourth ( ie . ,  17x1 7 mesh of grid points) the grid 

spacing in the initial finite difference domain ( ie . ,  5x5 mesh of grid points) (see Figure 

5.7(b)). The stress concentration factors obtained with these more refined finite 

difference discretizations are 2.42 and 2.3 1, which are within 12% and 7% of the 
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Peterson’s solution46. The stress distributions of the hoop stress resultant (N,)o 

midlength, 8=7d2, (denoted as line CD in Figure 5.2) normalized by the nominal stress 

resultant (N,)nom, are shown in Figure 5.8 as a function of the distance from the plate 

center normalized by cutout radius, R. The analytical solution reported by H ~ w l a n d ~ ~  is 

denoted by the thick solid line. The stress distribution obtained using 5x5,9x9 and 

17x1 7 mesh of grid points are denoted by the short dashed line, the thin solid line, and 

the dashed and dotted line, respectively. The results shown in Figure 5.8 indicate that the 

error decreases as the finite difference grid density increases, and the error decreases 

away from the edge of the cutout. 

The stress distributions of the hoop stress resultant (Nx)b along the midwidth, 8=x, 

(denoted as line AB in Figure 5.2) and midlength, 8=x/2, (denoted as line CD in Figure 

5.2) normalized by the nominal stress resultant (N,)nom, are shown in Figure 5.8 as a 

function of the distance from the plate center normalized by cutout radius, R. The 

analytical solution reported by H ~ w l a n d ~ ~  is denoted by the solid lines. This analytical 

solution is valid for distances, r,  away from the cutout of less than the plate half-width, b. 

Thus, for this configuration the solution along the midwidth is valid only for r I2R .  The 

stress distribution for the multifunctional analysis using homogeneous modeling with 

finite element discretization in each of the domains is denoted by the open circles in the 

figure. The stress distribution for the multifunctional analysis using heterogeneous 

modeling with combined finite difference and finite element discretizations is denoted by 

the open squares in the figure. For the heterogeneous modeling approach, the 

distribution is given for the most refined finite difference discretization (Le., 17x17 mesh 

of grid points). The stress distributions obtained with the multifunctional approach using 
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homogeneous and heterogeneous discretization are in excellent agreement with the 

reported solution. 

Contour plots of the magnitude of the displacement vector superimposed on the 

deformed shape and the longitudinal stress resultant, N,, are shown in Figure 5.10 and 

Figure 5.1 1, respectively. Results for the multiple-domain homogeneous modeling 

approach using finite element discretization in each of the subdomains are shown in the 

figures. While not shown, the results for the multiple-domain heterogeneous modeling 

approach are nearly identical to those shown in Figure 5.10 and Figure 5.1 1, and thus 

have not been included. Note that the deformation has been magnified by 10% of the 

maximum domain dimension. The displacement contour plots reveal a deviation from 

the nearly linear variation observed in the far-field region of the infinite plate, and the 

deformation at the cutout is more pronounced. The contour plots illustrate further the 

excellent correlation of the deformation (primary variable) patterns predicted using the 

multifunctional approach with the single-domain solution even with the interface 

boundary domain in a high-gradient region. The stress resultant (secondary variable) 

patterns predicted using the multifunctional approach are also in excellent agreement. 

The slight discontinuity in the stress resultant at the subdomain boundary (ie. ,  interface) 

is due to the derivation of the nodal stress resultant values from the element quantities. 

The stress resultants are recovered at the finite element nodes by extrapolating the 

stresses at the integration points to the nodes. A single nodal value of the stress resultant 

is obtained by averaging the stress resultants of the adjacent elements. In the multiple- 

domain analyses, the stress is not averaged across the subdomain boundary; thus, any 

gradient across the interface is not considered. 
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Figure 5.8. Convergence of Longitudinal Stress Distribution along Midlength for Finite- 
Width Plate with Central Circular Cutout. 
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Figure 5.9. Longitudinal Stress Distribution along Midwidth and Midlength for 
Finite- Width Plate with Central Circular Cutout. 
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(a) Single-Domain Model (b) Multiple-Domain Model 

Figure 5.10. Displacement Magnitude Distribution for Finite-Width Plate with Central 
Circular Cutout. 

8 Interface %BBi 
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( a )  Single-Domain Model ( b )  Multiple-Domain Model 

Figure 5.1 1. Longitudinal Stress Resultant Distribution for Finite-Width Plate with 
Central Circular Cutout. 

5.3. PLANE FLOW PROBLEM 

The flow of a viscous incompressible material squeezed between two long 

parallel plates41 is considered to illustrate the applicability and performance of the 

multifunctional approach to a representative vector-field problem in fluid mechanics. 
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The geometric configuration and the associated boundary conditions of the problem are 

indicated in Figure 5.12. 

A state of plane flow exists when the length of the bounding plates is very large 

compared to the width of and distance between the plates. Assuming the conditions of 

plane flow, the velocity and pressure fields are determined for a fixed distance between 

the plates. The plates are moving toward each other with a velocity, V O ,  and the width of 

and distance between the two plates is given by 2a and 2b, respectively. For this 

configuration, the ratio of the plate width and the distance between the plates, 2a/2b, is 3. 

Due to the double symmetry present in the problem, one quadrant of the domain was 

analyzed. The viscosity, p, of the fluid is 1 lb-sec/in2. The penalty finite element 

is used in the analysis. The penalty function formulation (see Eq. (3.61)) 

involves treating the continuity equation as a constraint among velocity components. A 

10 x 6 nonuniform mesh (1 0 elements in the x-direction and 6 elements in the y-  

direction) of four-node bilinear elements is used for the single-domain analysis (Le., 

reference model in Figure 5.13(a)). The nonuniform mesh, with smaller elements near 

the free surface at x=a, is used to delineate the singularity in the shear stress at the point, 

x=a, y=b. This singularity and the associated necessity for nonuniform mesh refinement 

make this problem ideal for demonstrating the multifunctional approach with detailed 

local modeling. The finite element models for the single- and multiple-domain analyses 

are shown in Figure 5.13(a) and Figure 5.13(b), respectively. In the multiple-domain 

analysis, homogeneous spatial modeling with finite element discretization is used. In this 

analysis, more elements are used in the region near x=a, y=b than in the single-domain 

analysis (see Figure 5.13). This local modeling yields a more complex configuration of 
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Figure 5.12. Geometric Configuration for Fluid Squeezed Between Parallel Plates. 
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Figure 5.13. Finite Element Models for Fluid Squeezed Between Two Parallel Plates. 

An approximate analytical solution to this two-dimensional problem is provided 

by Nadai’l and is given by 
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Note that this approximate solution does not satisfy the traction-free conditions (T,=ox=O 

and Tt = zxy=O) on the free edge ( ie . ,  x=u). Likewise, these traction-free conditions are 

not imposed in the finite element analysis; thus, the conditions are not identically 

satisfied. The horizontal velocity, u, as a function of y ,  at three representative locations, 

x=2u/3, x=5u/6 (along the vertical interface), andx=u, is shown in Figure 5.14(a), Figure 

5.14(b), and Figure 5.14(c), respectively. The analytical solution of Nadai’l is 

represented by the solid line in the figure. Finite element solutions obtained using a 

single-domain spatial discretization are represented by the dashed lines in the figure. The 

multiple-domain results for the homogeneous spatial modeling approach using finite 

element discretization in each of the subdomains are also shown in the figures, and these 

results are represented by the open circles. The results for the horizontal velocity 

component obtained from the single- and multiple-domain analyses are in excellent 
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agreement with each other, and the results are in overall good agreement with the 

analytical solution. 

The pressure, P, as a function ofx, near the centerline for the flow (ie. ,  y = b/16 - 

the centroids of the first row of finite elements in Figure 5.13), is shown in Figure 5.15. 

The analytical solution is denoted by the solid line. The solutions obtained from the 

single- and multiple-domain analyses are denoted by the dashed line and open circles, 

respectively. The results obtained from the multiple-domain analysis are in excellent 

agreement with those from the single-domain analysis. These finite element results are 

also consistent with the results published in the l i t e r a t ~ r e ~ ~ .  However, the finite element 

models predict a higher pressure in the center of the flow field (Le., x=O) than predicted 

by the analytical solution. 

While the velocity components and pressure field characterize the flow through 

the plates, the shear stress distribution illustrates the significance of using a graded 

single-domain mesh and a locally-refined multiple-domain mesh. The shear stress, z.y, as 

a function of x, near the upper bounding plate (Le., y = 15b/16 - the centroids of the last 

row of finite elements in Figure 5.13), is computed at the center of the finite elements and 

is shown in Figure 5.16. Again, the single-domain (dashed line in the figure) and 

multiple-domain (open circles in the figure) results are in excellent agreement with the 

approximate solution of Nadai’l (solid line in the figure) away from the free-edge. In 

addition, because of the local refinement at the free edge, the multiple-domain results for 

x25a/6 correspond to the shear stress located aty = 31b/32 (the centroids of the last row 

of elements in the refined region). These results illustrate the better representation of the 

gradient in the shear stress at the free edge than either the single-domain analysis or the 
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analytical solution. The approximate nature of the analytical solution is highlighted by 

these results since the solution given does not delineate the gradient on the boundary. 

For completeness, the longitudinal, ox, and transverse stress, oy, distributions are 

shown aty = 15b/16 andy = 31b/32, respectively, in Figure 5.17 and Figure 5.18. In 

general, the stresses predicted by the single- and multiple-domain finite element analyses 

have a larger value than those obtained by the analytical solution. However, the 

analytical solution is an approximate solution, and the finite element solutions predict the 

same overall trends in the stress distributions. The longitudinal stress distribution, ox, 

reveals the oscillatory nature of the finite element solution at the free-edge. The 

wavelength of the oscillations decreases as the mesh is increased in the local region at the 

free edge as indicated by the results from the multiple-domain analysis. In addition, the 

value of the peak stress at the free edge increases as the finite element mesh is refined. 

Overall, the results obtained with the multifunctional discretization approach are 

in excellent agreement with the single-domain analysis results and with the analytical 

solution given in the literature. These successful comparisons indicate the effectiveness 

of the method and its applicability to the vector-field problem, specifically that of the 

fluid flow problem. 
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Figure 5.14. Horizontal Velocity for the Flow Between Two Parallel Plates. 
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Figure 5.16. Shear Stress Distribution Near Plate Boundary for the Flow Between Two 
Parallel Plates. 
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Figure 5.17. Longitudinal Stress Distribution Near Plate Boundary for the Flow Between 
Two Parallel Plates. 
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Figure 5.18. Transverse Stress Distribution Near Centerline for the Flow Between Two 
Parallel Plates. 
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5.4. EXTENSIONS TO MULTIPLE DISCIPLINES 

In the present work, the multifunctional capability has been demonstrated on 

scalar- and vector-field problems applicable to the general field of engineering science 

and mechanics. While the demonstrations have illustrated the capability within different 

disciplines (Le., solid mechanics, fluid mechanics, and heat transfer), the method’s use 

has not been demonstrated for multidisciplinary analysis. Extensions to simultaneous 

multiple disciplines are discussed here. 

The term multidisciplinary or coupled systems refers to two or more systems that 

interact with each other, with the independent solution of any one system being 

impossible without simultaneous solution of the others52. In general, coupled systems 

and formulations, such as the multifunctional methodology presented in this work, are 

those applicable to multiple domains and dependent variables which usually describe 

different physical phenomena, and in which (1) neither domain can be analyzed 

independently; and (2) neither set of dependent variables can be explicitly eliminated at 

the differential equation level. The class of coupling problems that are the focus of this 

work can be categorized by coupling that occurs on domain interfaces via the boundary 

conditions imposed on that interface. Generally, the domains describe different physical 

situations, but it is possible to consider coupling between domains that are physically 

similar in which different discretization strategies have been used. Fluid-structure and 

thermal-structure interaction problems are typical examples that involve different 

disciplines in different but adjacent domains. Structure-structure or fluid-fluid interaction 

problems are examples where the interface divides arbitrarily chosen regions in which 

different mathematical approximations and/or spatial discretization procedures are used. 
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Single discipline interaction problems have been demonstrated extensively in this work. 

The extension of the multifunctional approach to multiple disciplines is illustrated using 

the fluid-structure interaction problem. 

Different methodologies have been developed for the computational analysis of 

the fluid-structure interaction problem, and different terminology has been used to 

describe the extent to which the disciplines are coupled. In this work, two classes of 

coupling are outlined; namely, fully coupled and loosely coupled methods. Fully coupled 

methods reformulate the governing equations so both the fluid and structural equations 

are combined into one set of equations, coupling the solutions only at the boundary 

interfaces between the fluid and the s t r ~ c t u r e ~ ~ .  These new governing equations are 

solved and integrated in time simultaneously. Loosely coupled methods make use of 

independent computational fluid dynamic (CFD) and computational structural mechanics 

(CSM) software modules. The coupling is accounted for by the exchange of data at the 

interface between the fluid and the structure. This coupling approach takes full 

advantage of the numerical procedures of individual disciplines such as finite difference 

approximations for fluids and finite element approximations for structures. In addition, 

software development efforts are simplified and software modularity is preserved. An 

alternate to the coupling approaches is to solve both the structures and fluids problems in 

a single computational domain. The major disadvantage of this methodology is the ill- 

conditioned matrices associated with the two physical domains. A secondary 

disadvantage is the inability to use existing CFD codes because they do not account for 

the interaction with the structure. In addition, the codes can not be readily extended to 

include this interaction. Thus, the method does not take full advantage of these 
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specialized and well-trusted programs. The extensions of the multifunctional capability 

will focus on the loosely coupled method. 

The procedure for a loosely coupled method is given by (1) advance the structural 

system under the fluid-induced load, (2) transfer the motion on the wet boundary (e.g., 

the fluid-structure interface) of the structure to the fluid system, (3) update the fluid 

dynamic mesh accordingly, (4) advance the fluid system and compute new pressure and 

fluid stress fields, and ( 5 )  convert the pressure and stresses into structural loads. The 

multifunctional approach is applicable to steps two and five in the procedure outlined. 

These steps are concerned with the transfer of data from a CFD grid to a CSM grid. Data 

transfer is complicated by the fact that there are basic differences between the nature of 

the solution methods. CFD analyses are concerned with the flow field surrounding the 

surface exposed to the flow. Thus, a CFD grid is very fine around the exterior of an 

airfoil, wherever changes in the flow field characteristics (ie. ,  boundary layer effects) are 

expected to be maximum. Conversely, CSM methods examine airloads on the surface 

and how these loads affect the internal structure. CSM grids lie on the surface within the 

airfoil and are oriented to the structural components. Thus, CFD and CSM grids differ in 

grid density and data transfer requires extrapolation and interpolation of discipline- 

specific field variables. 

Smith et al.53 evaluated computational algorithms to interface CFD and CSM 

grids. In this reference, several candidate algorithms for passing information from the 

fluid regime to the structural regime were evaluated and the disadvantages of each were 

discussed. In addition, a load and motion transfer method based on the conservation of 

momentum and energy has been developed by Farhat54. In this reference, a conservative 
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algorithm for computing the loads induced by a fluid on a structure is discussed. This 

algorithm was shown to be accurate, robust and reliable for transferring data from a CFD 

grid to a CSM grid not only when the discretization differed, but also when the grids did 

not share the same geometry as in beam or wing-box geometric models (see Figure 5.19). 

In the figure, the structural surface is denoted by r s  and the fluid surface is denoted by 

r F .  The beam model is representative of the use of a beam finite element model to 

idealize the structural component within the airflow. The wing-box model is 

representative of a plate and shell finite element model to idealize the component in the 

flow. The multifunctional methodology developed herein provides an alternate 

conservative algorithm for transferring data from the CFD grid to a CSM grid. In 

general, the methodology can be used to transfer data among many different disciplines. 

Further development of the methodology to a two-dimensional (surface) interface is 

required. This development follows the approach presented by Aminpour et al.55 for 

coupling three-dimensional finite element meshes. 

r F  

Figure 5.19. Beam and Wing-box Structural Models. 

The governing equations for multifunctional analysis of vector-field problems 

have been developed in Chapter I11 and are given in Eqs. (3.32) and (3.34). Discretized 
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equations are given for solid mechanics in Eq. (3.57) and for fluid mechanics in Eqs. 

(3.60) and (3.61). In these systems of equations, the third equation represents the 

subdomain discretization mapping from one subdomain to another subdomain. This 

equation is given by 

where the variables vith a subscript 1 represent a solid subdomain and the variables with 

a subscript 2 represent a fluid subdomain. At this point, consider that the loads, “ 2 ,  on 

the CFD grid are known. Eq. (5.1) can be used to solve for the unknown structural loads, 

a1 , provided that matrix KI, is square and invertible ( ie . ,  the number of pseudo nodes 

used to describe the generalized displacement along the interface is equal to the number 

of Lagrange multipliers). Therefore, 

a1 = - K - ’ K I ~  “2 
I1 (5.2) 

and 

Moreover, it can be shown that K I A  = 0 56. That is, the matrix A spans the null space of 

matrix KI. 

The fourth and fifth partitioned equations of the system of equations, given in 

Eqs. (3.57), (3.60) and (3.61), may be used to interpolate the structural deformations to 

the fluid grid. Recall that these equations are associated with the generalized 

displacements on the interface and thus, the generalized displacement vector may be 

partitioned as 
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u1 = { 1; 1 and similarly u2 = 

where the subscripts, i and 0, represent generalized deformations on the interface and 

within subdomain 1 or 2 (e.g., not on the interface). As such, the fourth and fifth 

equations are given as 

Kp1u; +K;UI = O  and K p 2 u i  + K  T U I  = O  
1 I2 

or 

~~u~ +K,TUI = o . 

Premultiplying this equation by AT yields 

A ~ K ~ ~ ~  + A  T T  K~ uI = o 

T T  Since A K I  = 0 ,  

ATKpui  = 0 and ATKpl  U; + ATKp2 U; = 0 

or 

(5.3) 

The variables, u; , are associated with the known structura- deformations from tile 

structures grid, and the variables, u i  , are associated with the unknown deformations to 

be imposed on the fluid grid. Given that the matrix K2 is square and invertible, Eq. 

(5.3) can be solved to obtain the unknown deformations. Therefore, 
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The values, u i  , can now be used in the CFD code to update the surface deformation and 

to calculate a new set of surface loads. With Eqs. (5.2) and (5.4), the multifunctional 

methodology described herein may be extended to the multiple-domain analyses of 

different disciplines. 

5.5. SUMMARY 

In this chapter, the multifunctional methodology has been described and 

demonstrated for vector-field problems in engineering science. The selected problems 

included problems of solid mechanics and fluid mechanics. The governing equation in 

each case is the equation of linear momentum. In addition, for fluid mechanics, 

continuity conditions are required. The analyses performed have demonstrated the 

effectiveness and accuracy of the solutions obtained for the respective problems. In all 

cases, the results obtained using the multifunctional methodology were in overall good 

agreement with the reported analytical or reference solution. 

Based on the findings for the vector-field problems, extensions of the 

multifunctional collaborative methodology to multiple-domain analyses of different 

disciplines have been briefly investigated. An exploratory examination of the extensions 

illustrates the applicability of the methodology to loosely coupled multiple-discipline 

applications. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

6.1. GENERAL 

Multifunctional methodologies and analysis procedures have been formulated for 

interfacing diverse domain idealizations including multi-fidelity modeling methods and 

multiple-discipline analysis methods. The methods, based on the method of weighted 

residuals, ensure accurate compatibility of primary and secondary variables across the 

domain interfaces. Methods have been developed for scalar-field and vector-field 

problems. The methods have been rigorously developed for multiple-domain 

applications, and the robustness and accuracy has been illustrated. Multi-fidelity 

modeling approaches have been developed that include both homogeneous (Le., the same 

discretization method in each domain) and heterogeneous ( 2 .  e., different discretization 

methods in each domain) discretization approaches. Results have been presented for the 

scalar- and vector-field multifunctional formulation using representative test problems. 

Associated computational issues are also discussed. In addition, the extension to 

multiple-domain analysis with different disciplines has been discussed. 

6.2. CONCLUSIONS 

The multi-fidelity modeling of domains has been developed for homogeneous and 

heterogeneous discretization approaches for both scalar- and vector-field problems. The 

finite element and finite difference methods and combinations thereof have been used in 

each of the discretization approaches. 
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Multi-fidelity modeling 

Several general conclusions regarding the multi-fidelity modeling approaches can 

be made. First, each of the multiple-domain approaches leads to a non-positive definite 

system of equations, which impacts the solution strategy. Second, modeling flexibility in 

the multiple-domain method is increased at the expense of additional degrees of freedom 

introduced to the system of equations. However, the modeling advantage gained 

outweighs the computational expense due to the additional degrees of freedom, and the 

impact of the increased number of degrees of freedom due to the interface constraints is 

reduced as the overall problem size is increased. Third, while the multifunctional method 

encompasses heterogeneous discretization approaches using the finite difference method, 

the limitations regarding its use in the presence of complex boundary conditions and 

configurations restrict the method’s general-purpose use. Fourth, in general, the 

homogeneous and heterogeneous multiple-domain approaches using the finite difference 

discretization in one or both domains yield systems of equations that are not symmetric. 

This lack of symmetry is due to the use of the Dirac delta function as the weight function 

in the formulation. This function is introduced in the constraint integral used to form the 

coupling matrix in the upper triangular part of the system matrix. The finite difference 

“shape function” is used in the corresponding constraint integral used to form the 

coupling matrix in the lower triangular part of the system matrix. In fact, in the finite 

difference method, there may be a lack of symmetry in each of the independent 

subdomain “stiffness” matrices due to the imposition of the boundary conditions. 
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Scalar-field problems 

Conclusions regarding the multiple-domain modeling approach for the scalar-field 

problem include the following statements. First, scalar-field problems introduce many of 

the computational issues associated with the multifunctional approach. Second, 

satisfaction of the boundary conditions for the scalar-field problem using finite difference 

discretization is more straightforward than for the vector-field problem. The five-point 

template used to approximate the derivatives does not introduce difficulties at the corners 

of the domain, as is the case with the nine-point template used in the vector-field 

problem. Third, fictitious nodes are avoided by evaluating the governing equations only 

at the interior grid points of the domain. The essential and natural boundary conditions 

are applied at the boundary nodes with higher-order forward and backward difference 

approximations used for the first derivatives present in the natural boundary condition 

equations. Fourth, the governing equation is evaluated at the nodes along the subdomain 

common boundary. Straightforward central difference approximations are used at the 

interface to represent the interface tractions, which in turn are used to eliminate the 

fictitious nodes at the common boundary. 

Vector-field problems 

Based on the studies of the multiple-domain modeling approach for the vector- 

field problem, the following conclusions are drawn. First, the use of the finite difference 

method for the vector-field problem (e.g., plane stress problem) was far more 

complicated than for the scalar-field problem. The traction and displacement boundary 

conditions and the necessity to introduce and eliminate fictitious nodes outside the 

domain boundary greatly complicate the development. Second, the nine-point template 
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required in the finite difference approximation of the governing equations of the 

continuum introduces the need for alternative higher-order forward and backward 

difference approximations of the cross-derivatives present in the equations. Third, 

because of the difficulties associated with the first and second conclusions, the 

homogeneous and heterogeneous modeling approach using the finite difference method 

in one or both subdomains is not as attractive for vector-field problems as for scalar-field 

problems. Fourth, the governing equation is evaluated at the nodes along the subdomain 

common boundary. Complex manipulation of the nine-point template is required using 

forward and backward difference approximations of the cross-derivatives in order to limit 

the introduction of the fictitious nodes to the node along the common boundary at which 

the governing equation is being evaluated. This requirement is automatically satisfied in 

the scalar-field problem by the five-point template. The interface tractions are used to 

eliminate the fictitious nodes at the common boundary. 

Limitations 

While a rigorous multifunctional formulations has been presented, there are 

limitations in the implementation. Note that the purpose of the implementation described 

herein was to demonstrate the capabilities of the multifunctional approach on a set of 

representative benchmark problems. With this in mind, the limitations of the current 

implementation are as follows: 

The nodes or grid points at the ends of the common subdomain boundary of each of 

the subdomains must coincide. 

In the finite difference method used, at least three nodes are required in each of the 

coordinate directions where traction boundary conditions are imposed. 
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Extreme care must be taken to perform accurate input and output using data-exchange 

files (in this work, double-precision floating-point accuracy). 

The development of the interface routines in MATLAB@ limits the size of problem 

that may be analyzed. 

Cubic splines are used on the subdomain common boundary, which requires at least 

four unique nodes along this boundary. 

The implementation is limited to one-dimensional straight or curved common 

subdomain boundaries. 

The geometry is assumed to be conforming. That is, each of the subdomains describe 

the same geometry along the common boundary. 

In this work, the benchmark vector-field problems illustrated require only Co 

continuity (continuity of the primary variable). Thus, continuity of the primary variable 

is maintained along the subdomain common boundary through the interface constraint. 

For plate bending problems using classical plate theory, C1 continuity is required. In this 

case, continuity of the primary variable and its derivative is maintained along the 

common subdomain boundary. Here, the derivatives are approximated in the same 

manner as the primary variable. That is, cubic spline functions are used to approximate 

the generalized variables along the common subdomain boundary. Results for a wider 

range of problems including a plate bending problem have been given in reference 25. 

Summary of Results 

Results were presented for the scalar- and vector-field developments using 

example patch test problems. In addition, results for torsion, heat conduction and 

potential flow problems have been presented to demonstrate further the effectiveness of 



207 

the scalar-field development. Results for plane stress and plane flow problems have been 

presented for the vector-field development. Results for all problems presented are in 

overall good agreement with the exact or reference configuration by which they were 

evaluated. 

The multifunctional methodology presented provides an effective mechanism by 

which domains with diverse idealizations can be interfaced. This capability promises to 

provide rapidly the high-fidelity data needed in the early design phase. Moreover, the 

capability is applicable to the problems in the general field of engineering science and 

mechanics. Hence, the methodology provides a collaborative capability that accounts for 

discipline interactions among many disciplines. 

6.3. RECOMMENDATIONS FOR FUTURE WORK 

Future studies related to the present work are recommended. The present work 

provides a starting point for the following additional studies: 

1. Explore the use of a finite difference energy method, which alleviates many 

of the issues associated with the proper identification of boundary conditions 

and the use of irregular grids. 

Evaluate the performance of the methodology for the analysis of more 

complex structures and fluid flow problems. 

Extend and implement the multiple-discipline capability. 

Develop other analysis capabilities including thermal analysis, modal and 

buckling analysis, dynamic analysis, and nonlinear analysis. 

Develop other heterogeneous multiple-domain discretization approaches such 

as the use of the finite element and boundary element methods. 

2. 

3. 

4. 

5.  
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6. Develop strategy to exploit massively parallel processing (MPP) computer 

systems. 

Incorporate computationally intelligent strategies to identify where and when 

homogeneous or heterogeneous approaches should be used. 

7. 
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APPENDIX A 

OVERVIEW OF STEPS IN ANALYSIS AND SIMULATION 

Multifunctional collaborative methods should address four typical steps of 

analysis and design, namely, (1) representation or modeling of the geometry, (2) 

knowledge-based selection and development of appropriate mathematical models (i.e., 

idealizatioddiscretization), (3) solution of the mathematical model (continuous and/or 

discrete), and (4) interrogatiodassessment of the results. These steps provide the 

foundation for enhanced integrated design and analysis tools, and the steps are briefly 

outlined in this appendix. 

Geometry Modeling 

To represent the structural geometry (geometry modeling) a geometric model is 

created to represent the size and shape of a system component. In aerodynamic and 

structural analyses, a common three-dimensional parameterized description of the 

airframe is shared. Geometry modeling is the starting point of the product design and 

manufacture process and is the first step in using a computer-aided desigdcomputer- 

aided manufacturing (CAD/CAM) system57. The accuracy of the geometric model and 

the way in which it is structured has far-reaching effects on other CAD functions such as 

finite element analysis, drafting, and numerical control (NC) part programming. 

CAD/CAM systems can be utilized to develop a design and monitor and control the 

manufacturing process from start to finish. Numerous CAD software packages5* for 

defining the geometry of structural systems are commercially available. 

Computer-aided engineering (CAE) has facilitated the assimilation of the 

engineedanalyst earlier in the design stage as an engineer in-the-loop. Typically, this 
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cycle leads from the design engineer to the analyst and back to the designer. A critical 

aspect of this cycle is the time required to generate analysis models, perform the analysis 

and decide if changes are needed. However, new trends in modeling and simulation are 

redefining the roles of the designer and the analyst. Many companies are now turning 

designers into analysts. The underlying philosophy guiding this paradigm shift is the 

desire to give designers the tools needed to predict a design's performance early in the 

process, rather than just to define its geometry. These tools also embody a knowledge 

base to guide the designer through various analysis steps. Moreover, this new paradigm 

allows the highly specialized analysts to impact the design by performing more complex 

analyses to determine the structural integrity, the potential failure mechanisms and the 

complex response characteristics ( ie . ,  material or geometric nonlinearity), and 

multidisciplinary characteristics of the design. 

This role redefinition can succeed only if enough analyses are performed early in 

the design process to identify critical design parameters, evaluate their interactions, and 

determine the best overall design. To expedite this process developers of computer-aided 

design (CAD) and analysis software have integrated the CAD and analysis functions. 

Such software integration and database coupling frequently enables designers to perform 

analyses directly on geometry, thus reducing the time required to prepare analysis 

models. 

IdealizatiodDiscretization 

To develop discretized mathematical models of aerospace systems, several 

approximate numerical analysis methods have evolved over the years. The most 

commonly used discretization methods are the finite difference method and the finite 
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element method. The finite difference method of a configuration gives a pointwise 

approximation to the governing equations. While finite difference techniques are widely 

used in fluid dynamics and can treat fairly complex problems, they become hard to use 

when irregular geometrical shapes or unusual boundary conditions are encountered. This 

adverse attribute is particularly significant in structural analysis. In contrast, the finite 

element method is widely used for the analysis of many engineering problems involving 

static, dynamic and thermal stresses of structures. Typical input for a finite element 

analysis program consists of the geometric idealization, the material properties, the 

loading, and boundary conditions. The area of greater difficulty in the finite element 

technique lies in the geometric idealization, that is, representing the geometry of the 

structure by a suitable finite element mesh. Element aspect ratio, taper, and skew are 

characteristics that adversely affect the performance of many finite elements in use today 

and thus are factors in determining the suitability of a mesh. As the complexity of 

structural configurations and material systems being modeled with the finite element 

method has increased, manual mesh generation has become extremely tedious, time- 

consuming, expensive and consequently, intractable. This limitation is alleviated through 

the development of automatic mesh generators, which are typically integrated within the 

finite element modeling software and often integrated within the CAD system. These 

mesh generators are powerful tools for discretizing complex structural configurations. 

Issues associated with idealization still arise such as whether to use solid finite elements 

or shell finite elements. However, if the CAD and analysis engines are not driven from 

the same geometry, the translation of geometry may introduce errors in analytical models. 

In addition, due to the geometric complexity of such configurations, even the most robust 
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automatic mesh generator can often require analyst interaction to establish a suitable 

mesh and to provide engineering insight into the proper finite element to be used in the 

analysis. For example, some automatic mesh generators place three-dimensional models 

where two-dimensional shells should be used, which may distort the results. 

Response Prediction 

To solve the discrete system of simultaneous equations resulting from the 

discretization process and subsequent finite element assembly operations, myriad solution 

strategies have been developed for obtaining efficiently the unknown nodal values of the 

field variable or the primary unknowns. Two families of methods for solving linear 

systems of algebraic equations can be distinguished: direct and iterative equation solvers. 

The former can be defined as leading to the solution of a linear system in one step, while 

the latter will require many iterative steps. If the equations are linear, a number of 

standard solution techniques may be used which generally include either an iterative or 

direct solver. If the equations are nonlinear, their solution is more difficult to obtain. All 

approaches will necessarily be repeated solution of linearized equations. A common 

solution method used to solve nonlinear systems of equations is the Newton-Raphson 

incremental-iterative solution procedure, which is accurate and converges for highly 

nonlinear behavior. High-performance equation solvers are a key component of solution 

strategies for linear and nonlinear structural response calculations for static, dynamic and 

eigenvalue problems in finite element analysis. There has been a plethora of research in 

the area of equation solvers for large-scale aerospace structures with only representative 

works referenced herein. Matrices resulting from discretization of structural systems are 

generally real, symmetric, positive definite, banded, and sparse. The performance of 
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iterative and direct equation solvers has been compared to identify the most appropriate 

tool for the solution of equations arising from structures systems59. This work identified 

advantages and disadvantages of both types of solvers. The study concluded that the 

relative performance of solvers depends on the amount of computations as well as the 

rate at which operations can be carried out on a given computer. 

Direct sparse solvers were found to be most attractive for models composed of 

higher-order finite elements, where they benefit most from a greatly reduced operation 

count. Sparse direct techniques are efficient improvements over first-generation direct 

methods that require more operation counts and larger memory capacity6'. The number 

of operations in a sparse method are significantly reduced through reordering and storage 

strategies that effectively compress the global stiffness matrix into a format that exhibits 

a greater degree of nonsparsity prior to factorization and thus substantially reduces the 

associated computational costs. Iterative methods require much less memory than direct 

solvers, but their effective use depends on a fast convergence rate, which has been found 

to be best for finite elements with low aspect ratios. Skyline and variable band linear 

equation solvers have been developed to exploit the matrix characteristics of structural 

systems and to exploit the full capabilities of parallel and vector supercomputers61. More 

recently, general-purpose equation solvers have been developed for complex, 

nonsymmetric, indefinite, and dense matrix characteristics, which are prevalent in 

disciplines such as electromagnetic and acoustic analysis62. Over the years, equation 

solvers have been developed to take advantage of the rapidly increasing computational 

power afforded by vector and parallel high-performance computers. These ultra-rapid 

equation solvers coupled with the major advances in computational power now available 
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in desktop personal computers and workstations have made it feasible to perform high- 

fidelity analyses in the preliminary design stage. However, additional developments are 

required to perform real-time large-scale analyses within an interactive virtual reality 

analysis and design environment. More intensive reviews of equation solvers may be 

found in the open literature (e.g., references 63, 64, and 65). 

Assessment of Results 

The fourth and final step in the analysis and simulation process is the 

interrogation of the results. In years past, the engineer would spend an enormous amount 

of time plowing through pages of computer output while waiting for results from 

additional analyses. With the increased speed and efficiency of today’s equation solvers, 

the rapid interrogation of results becomes decidedly more significant. It is at this step of 

interpretation of results that the engineer must be integrally involved. Powerful pre- and 

post-processing tools coupled with state-of-the-art computational technology provide the 

engineer with a comprehensive tool set for creating and discretizing complex geometries, 

performing analyses and visualizing results. Some software provide novel capability to 

enhance the designer-computer interaction while interrogating results. Engineers can 

view the results of parametric studies in a series of windows to identify or compare 

important design parameters. In addition, analysis results from different design 

approaches may be viewed in different windows and assessed to determine the most 

feasible design. This and other such visualization capabilities facilitate the rapid 

interpretation of analysis results, thus improving productivity of higher-order analyses 

and providing an opportunity for the engineedanalyst to be an integral part of the design 

process from concept to manufacture. Recently, immersive virtual reality environments 
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for visualization and interpretation of geographically dispersed results have been 

proposed as part of the NASA Intelligent Synthesis Environment (ISE) Initiative that 

promises to revolutionize the design process 

scale computer-generated projection systems that allow users to interact directly with 

their data in three spatial dimensions. Emerging advanced engineering environments6* 

will provide visual, auditory, and haptic feedback to further aid the engineer in detailed 

assessment of results. 

66,61 . Immersive environments are human- 
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APPENDIX B 

CUBIC SPLINE INTERPOLATION MATRICES 

The interpolation matrices used in the deformation and geometry assumptions of 

the multifunctional approach are outlined in this appendix. Given a series of points xi 

(i = O,l, ... ,n) which are generally not evenly spaced, and the corresponding function 

valuesflxi), the cubic spline function denoted g(x) may be written as 

where hx=xi+l- xi and g,, denotes differentiation twice with respect to x. This equation 

provides the interpolating cubics over each interval for i = 0,1, .. .,n - 1 and may be given 

in matrix form as 

g = +,g,xx +?2f (B.2) 

For each of the k values of x at which the spline function is to be evaluated, Xi< x k  <Xi+l, 

k =1,2 . . . p, and p is the number of evaluation points. The and ?2 matrices may be 

written in the form 

T, = 

where 

and T 2 =  
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and 

, and f = 

A A 

Note that there are, at most, two nonzero coefficients in each row of the T1 and T2 

matrices given above. 

Applying additional smoothness conditions (i.e., equating the first and second 

derivatives of adjacent interpolating cubics at xi) yields a set of simultaneous equations of 

the form 

If the xi are evenly separated with spacing Ax, then the Eq. (B.3) becomes 
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Eqs. (B.3) and (B.4) may be written as 

Ag,, = Pf (B.5) 

The coefficients of matrices A and P are dependent upon the end conditions, which are 

discussed in the following section. 

End Conditions 

Whether the equations are of the form of Eq. (B.3) or Eq. (B.4), there are n-1 

equations in the n+l unknowns g,, (xo ), g,, (XI ), ..., g,, (xn ). The two necessary 

additional equations are obtained by specifying conditions on g,, (io) and g,, (in). For a 

natural spline, g,, (io)= g,, (xn) =O. However, in this work, these second derivatives are 

calculated by differentiating (twice) a cubic function which passes through the first four 

pseudo-nodes along the interface path and another cubic function that passes through the 

last four pseudo-nodes along the interface path. Evaluating this cubic function, 

g(x )  = a. + alx + a2x2 + a3x3,  and at the first four points gives 

Solving for the coefficients yields a = N-lg or 
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a0 

a1 
a2 I a3 

From the cubic function, g,, (x) = 2 ~ 2  + 6 ~ 3 ~  where a2 and a3 are determined 

from Eq. (B.7). Equation (B.7) is valid for evenly spaced as well as arbitrarily spaced 

points. Similar expressions are obtained for the cubic function passing through the last 

four points where coefficients of the inverted matrix similar to those in Eq. (B.7) are 

denoted nkl for k,l =1, ..., 4. With these end conditions, the matrices of Eq. (B.5) are 

given for equally-spaced points as 

and P =  

A =  

1 0 0 ... 
1 4 1 ... 

1 4 1  

... 1 4 1  

... 0 0 1  

P1 P2 
6 -12 

A x A x  
6 

Ax 

- -  

- 

... 

(n+l  x n+l) 

P3 P4 ... 
6 

Ax 
-12 6 
A x A x  

- ... 

- - ... 

... 
P1 - F2 F3 F4. 

(n+l  x n+l)  

where Pk = 2n3k + 6n4k and F k  = 2z3, + 6Z4k for k,l =1, ..., 4. For unevenly spaced 

points, the tridiagonal A and P matrices may readily be obtained from Eq. (B.3). 
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Expressing p(x) in Terms of Functional Values-flxil 

In Eq. (B.2), the spline function g(x) is expressed in terms of the functional values 

f(xi) as well as second derivatives of the spline function, g,, (xis. However, it is desirable 

to express g(x) in terms of the function valuesflxi) only. This manipulation is done by 

solving for g,, (xis in Eq. (B.5) yielding 

(B.8) 
1 g,, = A- Pf 

Substituting in Eq. (B.2) yields 

g ( x )  = %lA-lPf + %2f = (%lA-lP + ?2)f = Tf . (B .9> 

Derivatives of the spline function are obtained by differentiating Eq. (B.9) yielding 

and (T2 )'z = 

and 
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for xi I Xk I xi+l and j = i + 2  1% 
Again, note that there are, at most, two nonzero coefficients in the (%1 and (%2 

matrices. In this derivation, x has been used as the independent variable. However, in 

the context of the interface definition herein, s is the independent variable and is 

substituted for x in the derivation in Appendix C. For the displacement assumption, the 

matrices developed for equally spaced points were used. For the geometry assumption, 

matrices for unequally spaced points were used. 
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APPENDIX C 

DERIVATION OF INTERFACE GEOMETRY 

C.l. GENERAL 

In the initial development outlined in reference 25, the interface path, TI, was 

defined by piecewise linear segments. For curved interfaces, this definition only 

approximates the true curved geometry. The error in this approximation is a function of 

the interface path curvature and the number and location of the subdomain nodes along 

the interface. In addition, the interface path was computed along each subdomain 

independently, thus producing two different interface geometry definitions. For a 

structure with mild curvature, the error in the interface path definition did not influence 

the accuracy of the solution obtained in the analysis25. However, for problems with 

moderate to large curvature, this error may be large and adversely influence the accuracy 

of the interface element analysis. 

In the present work, the element interface geometry is determined in one of two 

ways: (1) by specifying the function that represents the exact geometry of the interface 

(i.e., the linear interface is the trivial case) or (2) by passing a spline of the desired order 

(typically a cubic spline) through the specified coordinate data points to determine the 

function representing the geometry. In either case, the specified or computed function is 

parameterized and its first derivative is used to determine the arc length along the 

interface geometry of the subdomains as well as the interface boundary. Thus, in contrast 

to the earlier work, the interface geometry definition is a more accurate representation of 
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an arbitrarily curved geometry. In addition, only one interface path geometry is defined, 

and all the finite element nodes along that interface lie on that geometry. 

For a curved geometry, the most general way of determining the interface path of 

the two approaches mentioned previously is by using the latter approach (i.e., passing a 

cubic spline through the specified coordinates). In this case, a smooth curve is fit to the 

set of spatial coordinates by computing three cubic spline functions (one for each 

coordinate direction) expressing the coordinates as functions of a chordal distance 

parameter. The derivatives of these functions are obtained by differentiating the 

interpolating function. These derivatives are used in the parametric definition for the 

length of the arc between two points to compute the arc length between each of the 

specified coordinates. The spatial coordinates of the finite element nodes along each 

subdomain boundary provide the input for the interface geometry definition. These nodal 

coordinates are used to construct the function representing the curved geometry and to 

determine the arc length of the path. The associated variable, s, is computed along the 

subdomain boundaries. The number of evenly-spaced pseudo-nodes is determined 

internally or from the used-specified value after which the path variable, s, is computed 

along the interface path. See Appendix B for a brief discussion of the cubic spline used 

as the basis for the geometry representation. 

C.2. GEOMETRY REPRESENTATION 

The arc length or interface path is derived in this appendix. The spatial 

coordinates of finite element node i are given by Xi, yi, and zi. The curve may be 

represented parametrically by 
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x = x(r)  

Y = Y ( d  
z = z ( r )  

2 where ri = d(xi+l - x i )  + bi+l - y i p  + (zi+l - zi >’ . Smooth cubic splines are fit 

through each of these coordinate functions. These coordinate functions are then 

expressed as 

x(r)  = Tx, 

Y ( 4  = TY, 
z(r) = Tz, 

where T is a matrix of interpolation functions (see Eq. B.9 in Appendix B) and is 

evaluated at the points ri. The vectors x,, y,, and z, contain the sorted nodal coordinates, 

xi, yi, and zi, along the interface (ie. ,  the concatenation of the nodes from each of the 

subdomains to which the interface element is attached). 

The length of the arc between each of the points along the interface may be 

calculated immediately as 

and 
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where T,, is obtained by differentiation of the interpolation matrix T with respect to the 

independent variable, r, (see Eq. B.10 in Appendix B) and is evaluated at points, ri. The 

variable, s, is called the parameter of the arc length or the path variable herein. This 

variable measures the distance along the curve given by the parametric equations above. 

Thus, the arc length, s(ri) is obtained by numerical integration using Gaussian quadrature 

with four quadrature points. The path variable, as previously defined, is associated with 

the coordinates of the finite element nodes along the interface. The path variable, s, for 

the pseudo-nodes is computed by dividing the total arc length into equal segments. This 

total arc length is determined by summing the arc length between each set of two points, 

ri-1 and ri, over the total interface path to obtain the total arc length. In addition to the 

path variable, s, at the j  pseudo-nodes, the coordinate location of these pseudo-nodes is 

also desired. 

Moreover, in general, a computational coordinate frame is established along the 

interface; thus, the tangent to the interface path is desired. These calculations are 

addressed in the following discussion. 

Upon obtaining the path variable at the finite element nodes along the interface, 

the coordinate functions may now be expressed as 

x = X ( S )  = Tx, 

Y = y G )  = TY, 
z = Z(S)  = Tz, 

Here, the interpolation matrix T is evaluated at the path coordinates, s, of the pseudo- 

nodes yielding desiredx, y ,  and z coordinates. The unit tangent vector to the interface 
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path is obtained by differentiating the coordinate functions with respect to the path 

variable, s, and is given by 

where T,, is evaluated at the path coordinate, s, of the pseudo-nodes and the finite 

element nodes. The tangent vector is then given by 
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